Structure-Property-Comparisons of Clathrasils and Gas Hydrates

  • Pramod WarrierEmail author
  • Carolyn A. Koh
Technical Paper


Clathrates are inclusion compounds formed by specific host molecules and elements such as water, silica, and silicon in the presence of suitably sized guest molecules at appropriate temperature and pressure conditions. Clathrate compounds are of fundamental importance as they illustrate how simple molecules can combine to form a variety of complex caged structures yielding unique and interesting properties. In this overview, structure, properties, and applications of clathrates formed by silica (called clathrasils) and water (called gas hydrates) are briefly reviewed. Similarities and differences between clathrasils and gas hydrates are discussed with the hope that cross-fertilization between these fields can result in future advancements and new science understanding guest–host crystalline structures.


Clathrates Clathrasils Gas hydrates Energy storage Carbon sequestration 



Authors would like to thank Prof. John A. Ripmeester for his constructive suggestions on this manuscript.


  1. 1.
    Momma K, Ikeda T, Nishikubo K, Takahashi N, Honma C, Takada M, Furukawa Y, Nagase T, and Kudoh Y, Nat Commun 2 (2011) 196.CrossRefGoogle Scholar
  2. 2.
    Collett T, Bahk J-J, Baker R, Boswell R, Divins D, Frye M, Goldberg D, Husebø J, Koh C, Malone M, Morell M, Myers G, Shipp C, and Torres M, J Chem Eng Data 60 (2015) 319.CrossRefGoogle Scholar
  3. 3.
    Nolas G S (ed), The Physics and Chemistry of Inorganic Clathrates, Springer Series in Materials Science, vol 199, Springer (2014).Google Scholar
  4. 4.
    Krishna L, and Koh C A, MRS Energy Sustain 2 (2015) E8.Google Scholar
  5. 5.
    Takaoki T, Iwasaki T, Katoh Y, Arai T, and Horiguchi K, in Proc 4th Int Conf Gas Hydrates, Yokohama, Japan (2002).Google Scholar
  6. 6.
    Florusse L J, Peters C J, Schoonman J, Hester K C, Koh C A, Dec S F, Marsh K N, and Sloan E D, Science 306 (2004) 469.CrossRefGoogle Scholar
  7. 7.
    van den Berg A W C, Pescarmona P P, Schoonman J, and Jansen J C, Chemistry 13 (2007) 3590.CrossRefGoogle Scholar
  8. 8.
    van den Berg A W C, Zwijnenburg M A, Bromley S T, Flikkema E, Bell R G, Jansen J C, and Schoonman J, J Mater Chem 16 (2006) 3285.CrossRefGoogle Scholar
  9. 9.
    Dong J, Lin Y S, and Liu W, AIChE J 46 (2000) 1957.CrossRefGoogle Scholar
  10. 10.
    Linga P, Adeyemo A, and Englezos P, Environ Sci Technol 42 (2008) 315.CrossRefGoogle Scholar
  11. 11.
    Kang S-P, and Lee H, Environ Sci Technol 34 (2000) 4397.Google Scholar
  12. 12.
    Spencer D F, US Patent 6235092B1 May 22, 2001, System for Selectively Separating CO 2 from a Multicomponent Gaseous Stream (2001).Google Scholar
  13. 13.
    Voβ H, Therre J, Gies H, and Marler B, U.S. Patent 8574344B2 (assigned to BASF SE) Nov. 5, 2013, Template-free Clathrasisl and Clathrasils Membranes (2013).Google Scholar
  14. 14.
    Warrier P, Khan M N, Carreon M A, Peters C J, and Koh C A, J Renew Sustain Energy 10 (2018) 034701.CrossRefGoogle Scholar
  15. 15.
    Koh C A, Sum A K, and Sloan E D, J Appl Phys 106 (2009) 061101.CrossRefGoogle Scholar
  16. 16.
    Zhang J, Yedlapalli P, and Lee J W, Chem Eng Sci 64 (2009) 4732.CrossRefGoogle Scholar
  17. 17.
    Linga P, Kumar R, and Englezos P, J Haz Mater 149 (2007) 625.CrossRefGoogle Scholar
  18. 18.
    Himeno S, Tomita T, Suzuki K, and Yoshida S, Microporous Mesoporous Mater 98 (2007) 62.CrossRefGoogle Scholar
  19. 19.
    Momma K, J Phys Condens Matter 26 (2014) 103203.Google Scholar
  20. 20.
    Max M D, and Pellenbarg R E, U.S. Patent US6158239A (assigned to US Secretary of the Navy) Dec 12, 2000, Desalination Through Gas Hydrate (2000).Google Scholar
  21. 21.
    Kang K C, Linga P, Park K-N, Choi S-J, and Lee J D, Desalination 353 (2014) 84.CrossRefGoogle Scholar
  22. 22.
    Chae H K, Klemperer W G, Payne D A, Suchicital C T A, Wake D R, and Wilson S R, in Materials for Nonlinear Optics, (eds) Marder S R, Sohn J E, and Stucky G D, ACS Symposium Series; American Chemical Society, Washington DC (1991), p 528.Google Scholar
  23. 23.
    Takabatake T, Suekuni K, Nakayama T, and Kaneshita E, Rev Mod Phys 86 (2014) 669.CrossRefGoogle Scholar
  24. 24.
    Warrier P, and Koh C A, Appl Phys Rev 3 (2016) 040805.CrossRefGoogle Scholar
  25. 25.
    Davy H, Philos Trans R Soc Lond 101 (1811).Google Scholar
  26. 26.
    von Lasaulx A, Mineralogischkrystallographische Notizen. VII. Melanophlogit, ein neues mineral, Neues Jahrbuch für. Mineralogie (1876) 250.Google Scholar
  27. 27.
    Hammerschmidt E, Ind Eng Chem 26 (1934) 851.CrossRefGoogle Scholar
  28. 28.
    Stackelberg M V, Naturwissenschaften 36 (1949) 327.CrossRefGoogle Scholar
  29. 29.
    Platteeuw J and Waals J V D, Mol Phys 1 (1958) 91.CrossRefGoogle Scholar
  30. 30.
    Kamb B, Science 148 (1965) 232.CrossRefGoogle Scholar
  31. 31.
    Schlenker J L, Dwyer F G, Jenkins E E, Rohrbaugh W J, Kokotailo G T, and Meier W M, Nature 294 (1981) 340.CrossRefGoogle Scholar
  32. 32.
    Collett T, Riedel M, Cochran J, Boswell R, Presley J, Kumar P, Sathe A, Sethi A, Lall M, and the NGHP Expedition Scientists, 2015, Indian National Gas Hydrate Program Expedition 01 report: U.S. Geological Survey Scientific Investigations Report 2012–5054. Available at: (last accessed: January 2, 2019).
  33. 33.
    Warrier P, Khan M N, Srivastava V, Maupin C M, and Koh C A, J Chem Phys 145 (2016) 211705.Google Scholar
  34. 34.
    Baerlocher C, and McCusker L B, Database of Zeolite Structures: (last accessed: January 2, 2019).
  35. 35.
    Liebau F, Zeolites 2 (1983) 191.CrossRefGoogle Scholar
  36. 36.
    Pouchard M, and Cros C, in The Physics and Chemistry of Inorganic Clathrates, (ed) Nolas G S, Springer Series in Materials Science, vol 199, Springer (2014), p 1.Google Scholar
  37. 37.
    Gies H, Zeitschrift fur Kristallographie 164 (1983) 247.Google Scholar
  38. 38.
    Gerke H, and Gies H, Zeitschrift fur Kristallographie 166 (1984) 11.Google Scholar
  39. 39.
    Santamaria-Perez D, and Liebau F, in Inorganic 3D Structures, (ed) Vegas A, Springer, Berlin Heidelberg (2011).Google Scholar
  40. 40.
    Sloan E D, and Koh C A, Clathrate Hydrates of Natural Gases, 3rd Ed. CRC Press, Boca Raton, FL (2008).Google Scholar
  41. 41.
    Davidson D W, and Garg S K, Canadian J Chem 50 (1972) 3515CrossRefGoogle Scholar
  42. 42.
    Richardson Jr. J W, Pluth J J, Smith J V, Dytrych W J, and Bibby D M, J Phys Chem 92 (1988) 243.CrossRefGoogle Scholar
  43. 43.
    Sterzel W, Hofman R, Rausenberger M, and Meeβen C, Fresen J Anal Chem 349 (1994) 147.CrossRefGoogle Scholar
  44. 44.
    Fyfe C A, and Gies H, J Incl Phenom Mol Recognit Chem 8 (1990) 235.CrossRefGoogle Scholar
  45. 45.
    Adorni F, and Tateo F, Axis 3 (2007) 1, available at: (last accessed: January 2, 2019).
  46. 46.
    Beard A D, Howard K, Carmody L, and Jones A P, Am Mineralog 98 (2013) 1998.CrossRefGoogle Scholar
  47. 47.
    Momma K, Ikeda T, Nagase T, Kuribayashi T, Honma C, Nishikubo K, Takahashi N, Takada M, Matsushita Y, Miyawaki R, and Matsubara S, Bosoite, IMA 2014-023, in CNMNC Newsletter No. 21, August 2014, p 800; Mineralog Mag 78 (2014) 797.Google Scholar
  48. 48.
    Kohler S, Irmer G, Kleeberg R, Monecke J, Herzig P M, and Schulz B, Eur J Mineral 11 (1999) 129.Google Scholar
  49. 49.
    Lu H, Seo Y-T, Lee J-W, Moudrakovski I, Ripmeester J A, Chapman N R, Coffin R B, Gardner G, and Pohlman J, Nature 445 (2007) 303.Google Scholar
  50. 50.
    Gies H, Gerke H, and Liebau F, Neues Jahrbuch Fur Mineralogie-Monatshefte 3 (1982) 119.Google Scholar
  51. 51.
    Gies H, J Incl Phenom 2 (1984) 275.CrossRefGoogle Scholar
  52. 52.
    Gies H, Zeitschrift für Kristallographie 167 (1984) 73.CrossRefGoogle Scholar
  53. 53.
    Marler B, Dehnbostel N, Eulert H H, Gies H, and Liebau F, J Incl Phenom 4 (1986) 339.CrossRefGoogle Scholar
  54. 54.
    Gies H, Zeitschrift für Kristallographie 175 (1986) 93.Google Scholar
  55. 55.
    Gunawardane R P, Gies H, and Liebau F, Zeitschrift für Anorganische und Allgemeine Chemie 546 (1987) 189.CrossRefGoogle Scholar
  56. 56.
    Szostak R, Molecular Sieves: Principles of Synthesis and Identification, 2nd Ed, Thomson Science (1998).Google Scholar
  57. 57.
    Bibby D M, and Dale M P, Nature 317 (1985) 157.CrossRefGoogle Scholar
  58. 58.
    Huo Q, Feng S, and Xu R, J Chem Soc Chem Commun 0 (1988) 1486.Google Scholar
  59. 59.
    Cooper E R, Andrews C D, Wheatley P S, Webb P B, Wormald P, and Morris R E, Nature 430 (2004) 1012.CrossRefGoogle Scholar
  60. 60.
    Database of worldwide gas hydrates, available at: (last accessed: September 11, 2018)
  61. 61.
    Results of the India National Gas Hydrate Program Expedition 02, available at: (last accessed September 11, 2018).
  62. 62.
    Collett T S, Riedel M, Cochran J R, Boswell R, Kumar P, Sathe, A V, and the NGHP Expedition 01 Scientific Party, in Proc of the 6th Int Conf on Gas Hydrates (ICGH 2008), Vancouver, British Columbia, Canada, July 6–10 (2008).Google Scholar
  63. 63.
    Ford M H, Auerbach S M, and Monson P A, J Chem Phys 126 (2007) 144701.CrossRefGoogle Scholar
  64. 64.
    Li G, Liu D, Xie Y, and Xiao Y, Energy Fuels 24 (2010) 4590.CrossRefGoogle Scholar
  65. 65.
    Brown T D, Taylor C E, and Unione A J, US Patent 8354565B1 (assigned to the U.S. Department of Energy) Jan. 15, 2013, Rapid Gas Hydrate Formation Process (2013).Google Scholar
  66. 66.
    Liang Y, Ogundare F O, Miranda C R, Christie J K, and Scandolo S, J Chem Phys 134 (2011) 074506.CrossRefGoogle Scholar
  67. 67.
    Liu X, Welch M D, and Klinowski J, J Chem Phys B 101 (1997) 2811CrossRefGoogle Scholar
  68. 68.
    Jacobson L C, Hujo W, and Molinero V, J Chem Phys B 113 (2009) 10298.CrossRefGoogle Scholar
  69. 69.
    Falenty A, Hansen T C, and Kuhs W F, Nature 516 (2014) 231.CrossRefGoogle Scholar
  70. 70.
    Nakagawa T, Kihara K, and Harada K, Am Mineralog 86 (2001) 1506.CrossRefGoogle Scholar
  71. 71.
    Xu H, Zhang J, Zhao Y, Guthrie G D, Hickmott D D, and Navrotsky A, Am Mineralog 92 (2007) 166.CrossRefGoogle Scholar
  72. 72.
    Subramanian S, Kini R A, and Sloan E D, Ann N Y Acad Sci 912, 873 (2000).CrossRefGoogle Scholar
  73. 73.
    Takeya S, Fujihisa H, Yamawaki H, Gotoh Y, Ohmura R, Alavi S, and Ripmeester J A, Angew Chem Int Ed 55 (2016) 9287.CrossRefGoogle Scholar
  74. 74.
    Geiger C A, Dachs E, and Nagashima M, Am Mineralog 93 (2008) 1179.CrossRefGoogle Scholar
  75. 75.
    Amri M, Clarkson G J, and Walton R I, J Phys Chem C 114 (2010) 6726.CrossRefGoogle Scholar
  76. 76.
    Lightfoot P, Woodcock D A, Maple M J, Villaescusa L A, and Wright P A, J Mater Chem 11 (2001) 212.CrossRefGoogle Scholar
  77. 77.
    Kolesov B A, and Geiger C A, Am Mineralog 88 (2003) 1364.CrossRefGoogle Scholar
  78. 78.
    Likhacheva, A Y, Goryainov S V, Seryotkin Y V, Litasov K D, and Momma K, Microporous Mesoporous Mater 224 (2016) 100.CrossRefGoogle Scholar
  79. 79.
    Likhacheva, A Y, Prasad P S, Sarma D S, and Goryainov S V, Microporous Mesoporous Mater 266 (2018) 149.CrossRefGoogle Scholar
  80. 80.
    Chen L, Lu H, and Ripmeester J A, Chem Eng Sci 138 (2015) 706.CrossRefGoogle Scholar
  81. 81.
    Khan M N, Phase Equilibria Modeling of Inhibited Gas Hydrate Systems Including Salts: Applications in Flow Assurance, Seawater Desalination and Gas Separation, PhD Thesis, Colorado School of Mines (2015).Google Scholar
  82. 82.
    Walsh M R, Koh C A, Sloan E D, Sum A K, and Wu D T, Science 326 (2009) 1095.CrossRefGoogle Scholar
  83. 83.
    Khurana M, Yin Z, and Linga P, ACS Sustain Chem Eng 5 (2017) 11176.CrossRefGoogle Scholar
  84. 84.
    Yin Z, Khurana M, Tan H K, and Linga P, Chem Eng J 342 (2018) 9.CrossRefGoogle Scholar
  85. 85.
    Gas hydrate production trial using CO2/CH4 exchange, available at: (last accessed January 2, 2019).
  86. 86.
    Schoderbek D, Martin K L, Howard J, Silpngarmlert S, and Hester K, OTC Arctic Technology Conference, 3–5 December, Houston, Texas, USA OTC-23725-MS (2012).Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.Advanced MaterialsHoneywellBuffaloUSA
  2. 2.Center for Hydrate Research, Chemical and Biological DepartmentColorado School of MinesGoldenUSA

Personalised recommendations