Microstructure and Mechanical Properties of Al/MgAl2O4 In Situ Composites Synthesized by Ultrasonic Cavitation

  • R. Raghu
  • Jayakrishnan Nampoothiri
  • T. Satish KumarEmail author
  • R. Subramanian
Technical Paper


Al–4Mg/MgAl2O4 composites were successfully synthesized by the in situ reaction of Al–4Mg alloy melt and H3BO3 precursor in the presence of ultrasonic cavitation field. Ultrasonic-assisted synthesis facilitated generation of ~ 350-nm-sized MgAl2O4 particles. Enhanced reaction along with dispersion of MgAl2O4 was perceived due to the synergetic effect of ultrasonic cavitation. The presence of MgAl2O4 particles resulted in 3–4 times reduction in matrix alloy grain size, and the grain refinement was further enhanced by ultrasonic treatment. Compared to unreinforced alloy, ultrasonicated Al/MgAl2O4 composite exhibited an improvement in ultimate tensile strength by ~ 30 MPa with ~ 85% of ductility retention. Grain boundary strengthening, Orowan dispersion strengthening, coefficient of thermal expansion mismatch strengthening and load-bearing strengthening were the anticipated mechanism for enhancement in mechanical properties.


Al–Mg alloy MgAl2O4 Grain refinement Ultrasonic treatment Mechanical properties 



One of the authors (JN) would like to thank the Council of Scientific and Industrial Research, New Delhi, for the Senior Research Fellowship (Award No.: 08/473(0006)/2015 EMR-1).


  1. 1.
    McCartney D G, Int Mater Rev 34 (1989) 247.CrossRefGoogle Scholar
  2. 2.
    Mayes C D, McCartney D G, and Tatlock G J, Mater Sci Eng 188 (1994) 283.CrossRefGoogle Scholar
  3. 3.
    Wannasin J, Canyook R, Wisutmethangoon S, and Flemings M C, Acta Mater 61 (2013) 3897.CrossRefGoogle Scholar
  4. 4.
    Easton M, St John D, Metall Mater Trans A 30A (1999) 1613.CrossRefGoogle Scholar
  5. 5.
    Mohanty P S, and Gruzleski J E, Acta Mater 44 (1996) 3749.CrossRefGoogle Scholar
  6. 6.
    Mohanty P S, and Gruzleski J E, Acta Mater 43 (1995) 2001.CrossRefGoogle Scholar
  7. 7.
    Prasad A, Mok J, Lafortune L, Bichler L, Trans Indian Inst Met 71 (2018) 2759.CrossRefGoogle Scholar
  8. 8.
    Kotadia H R, Qian M, and Das S, Trans Indian Inst Met 71 (2018) 2681.CrossRefGoogle Scholar
  9. 9.
    Lindsay G, Coope P S, Meredith MW, Schneider W, Schumacher P, Spittle J A, and Tronche A, Adv Eng Mater 5 (2003) 81.CrossRefGoogle Scholar
  10. 10.
    Yucel Birol, J Alloys Compd 443 (2007) 94.CrossRefGoogle Scholar
  11. 11.
    Kori S A, Murty B S, and Chakraborty M, Mater Sci Eng A 283 (2000) 94.CrossRefGoogle Scholar
  12. 12.
    Prasada Rao A K, Das K, Murty B S, and Chakraborty M, J Alloys Compd 480 (2009) 49.CrossRefGoogle Scholar
  13. 13.
    Li H T, Wang Y, and Fan Z, Acta Mater 60 (2012) 1528.CrossRefGoogle Scholar
  14. 14.
    Sun J, Wang D, Zhang Y, Sheng C, Dargusch M, Wang G, St John D, and Zhai Q, J Alloys Compd 753 (2018) 543.CrossRefGoogle Scholar
  15. 15.
    Zuo Y, Li H, Xia M, Jiang B, Scamans G M, and Fan Z, Scr Mater 64 (2011) 209.CrossRefGoogle Scholar
  16. 16.
    Wang Y, Li H-T, Fan Z, Trans Indian Inst Met 65 (2012) 653.CrossRefGoogle Scholar
  17. 17.
    Sreekumar V M, Babu N H, and Eskin D G, J Mater Eng Perform 26 (2017) 4166.CrossRefGoogle Scholar
  18. 18.
    Kim K H, Mater Lett 117 (2014) 74.CrossRefGoogle Scholar
  19. 19.
    Sreekumar V M, Hari Babu N, Eskin D G, and Fan Z, Mater Sci Eng A 628 (2015) 30.CrossRefGoogle Scholar
  20. 20.
    Horng C-F, Lin S-J, and Liu K-S, Mater Sci Eng A 150 (1992) 289.CrossRefGoogle Scholar
  21. 21.
    Tsunekawa Y, Suzuki H, and Genma Y, Mater Des 22 (2001) 467.CrossRefGoogle Scholar
  22. 22.
    Harini R S, Raj B, and Ravi K R, Trans Indian Inst Met 68 (2015) 1059.CrossRefGoogle Scholar
  23. 23.
    Leighton T G, J Fluid Mech 272 (1994) 407.CrossRefGoogle Scholar
  24. 24.
    Tzanakis I, Lebon G S B, Eskin D G, and Pericleous K, J Mater Process Technol 229 (2016) 582.CrossRefGoogle Scholar
  25. 25.
    Tzanakis I, Eskin D G, Georgoulas A, and Fytanidis D K, Ultrason Sonochem 21 (2014) 866.CrossRefGoogle Scholar
  26. 26.
    Harini R S, Nampoothiri J, Nagasivamuni B, Raj B, and Ravi K R, Mater Lett 145 (2015) 328.CrossRefGoogle Scholar
  27. 27.
    Kim KH, Surf Interface Anal 47 (2015) 429.CrossRefGoogle Scholar
  28. 28.
    Greer A L, Bunn A M, Tronche A, Evans P V, and Bristow D J, Acta Mater 48 (2000) 2823.CrossRefGoogle Scholar
  29. 29.
    Sreekumar V M, Babu N H, and Eskin D G, Metall Mater Trans B 48 (2016) 208.CrossRefGoogle Scholar
  30. 30.
    Hunt J D, and Jackson K A, J Appl Phys 37 (1966) 254.CrossRefGoogle Scholar
  31. 31.
    Raghu R, Nampoothiri J, and Satish Kumar T, Measurement 129 (2018) 389.CrossRefGoogle Scholar
  32. 32.
    Nampoothiri J, Raj B, and Ravi K R, Trans Indian Inst Met 68 (2015) 1101.CrossRefGoogle Scholar
  33. 33.
    Ramirez A, Qian M, Davis B, Wilks T, St John D H, Scr Mater 59, 19 (2008).CrossRefGoogle Scholar
  34. 34.
    Karbalaei Akbari M, Baharvandi H R, and Shirvanimoghaddam K, Mater Des 66 (2015) 150.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringSri Ramakrishna Engineering CollegeCoimbatoreIndia
  2. 2.Structural Nanomaterials LaboratoryPSG Institute of Advanced StudiesCoimbatoreIndia
  3. 3.Department of Metallurgical EngineeringPSG College of TechnologyCoimbatoreIndia

Personalised recommendations