Advertisement

Analysis of Temperature Losses of the Liquid Steel in a Ladle Furnace During Desulfurization Stage

  • J. E. Farrera-Buenrostro
  • C. A. Hernández-Bocanegra
  • J. A. Ramos-BanderasEmail author
  • E. Torres-Alonso
  • N. M. López-Granados
  • M. A. Ramírez-Argáez
Technical Paper
  • 13 Downloads

Abstract

In this research, a multiphase numerical simulation (steel–slag–argon) was carried out by coupling the VOF model with the transitory heat losses of the liquid steel during the injection of argon in the secondary refining process. To model the radiation in the free surface of the ladle, three models, P-1, discrete ordinates, and Rosseland, were considered. The thermal behavior of magnesia-carbon (MgO-C) and high alumina (Al2O3), which are commonly used in the industry, as a work wall was compared. Likewise, the behavior of two slag of different chemical composition was analyzed with two layer thicknesses. The results of the fluid dynamics agreed with those obtained in a physical scale model with the PIV technique. In addition, it was found that the Rosseland model allowed to quantify the radiative heat losses with a good approximation according to the results obtained in the industry. It was observed that the more viscous slag with greater thickness reduced the opening of the slag layer. Finally, the heat losses in the liquid steel could be controlled by manipulating the variables of thickness and viscosity of the slag and also the type of refractory of the ladle.

Keywords

Multiphase numerical model Heat transfer Ladle furnace Radiation modeling 

List of Symbols

a

Absorption coefficient (m−1)

C

Linear-anisotropic phase function coefficient (–)

C1ε, C2ε

Empirical constants of kε turbulence model (–)

Cµ

Empirical constant of kε turbulence model (–)

Cp

Heat capacity (J kg−1 K−1)

E

Energy (m2 s−2)

g

Gravity acceleration (m s−2)

Gk

Generation of turbulence kinetic energy (–)

h

Sensible enthalpy (J)

I

Intensity radiation (–)

k

Sensible enthalpy (J)

keff

Intensity radiation (–)

kt

Turbulent kinetic energy (m2 s−2)

n

Effective conductivity (W m−1 K−1)

P

Intensity radiation (–)

qr

Turbulent kinetic energy (m2 s−2)

Qar

Effective conductivity (W m−1 K−1)

\(\vec{r}^{{\prime }}\)

Turbulent thermal conductivity (W m−1 K−1)

\(\vec{s}\)

Refractive index of medium (–)

\(\overrightarrow {s}^{{\prime }}\)

Effective conductivity (W m−1 K−1)

T

Refractive index of medium (–)

t

Time (s)

\(\vec{u}\)

Velocity (m s−1)

ui, uj

Mean velocity in the directions i, j in the Cartesian coordinate directions (m s−1)

νar

Argon gas velocity (m s−1)

Greek Symbols

αq

Phase fraction of a control cell for different phases (–)

ρ

Density (kg m−3)

ε

Dissipation rate of turbulent kinetic energy (m2 s−3)

µ

Molecular viscosity (Pa s)

µt

Turbulent viscosity (Pa s)

µeff

Effective viscosity (Pa s)

τeff

Viscous dissipation (N m−2)

ϕ

Phase function (–)

\(\Omega^{{\prime }}\)

Solid angle (–)

σ

Stefan–Boltzmann constant (W m−2 K−4)

σs

Scattering coefficient (m−1)

σk, σε

Prandtl turbulent number for kε model (–)

Notes

Acknowledgements

The authors want to acknowledge the CONACyT, TecNM, ITM and CÁTEDRAS CONACyT for their continuous support.

References

  1. 1.
    Glaws P C, and Kor G J, The making, Shaping and Treating of Steel, Mc-Graw Hil, Pittsburgh PA (1998), p 661.Google Scholar
  2. 2.
    Gosh A, Secondary Steelmaking: Principles and Aplications, CRC Press, Boca Ratón Florida (2001), p 255.Google Scholar
  3. 3.
    Gerd S, Secondary Metallurgy, Verlag-Sthaleisen, Dusseldorf, Alemania, (2002), p 13.Google Scholar
  4. 4.
    Urquhart R, Guthrie R I L, and Howat D, J S Afr Inst Min Metall 74 (1973) 132.Google Scholar
  5. 5.
    Gaston A, and Medina M, Bol Soc Esp Ceram VIDR 33 (1994) 41.Google Scholar
  6. 6.
    Fredman T, Torkulla J, and Saxén H, Metall Mater Trans B 30 (1999) 323.CrossRefGoogle Scholar
  7. 7.
    Volkova O, and Janke D, ISIJ Int 43(2003) 1185.CrossRefGoogle Scholar
  8. 8.
    Zabadal J R S, Vilhena M T M B, and Bogado S Q, Ironmak Steelmak 31 (2004) 227.CrossRefGoogle Scholar
  9. 9.
    Gupta N, and Chandra S, ISIJ Int 44(2004) 1517.CrossRefGoogle Scholar
  10. 10.
    Peaslee K, Lekakh S, and Sander T, Proceedings of 59th SFSA T&O, Missouri, USA, (2005), p 4.2:1.Google Scholar
  11. 11.
    Qing L, Kai W, Guangguang Y, Chuangji H, and Kaike C, AISTech-Iron and Steel Technology Conference Proceedings, Cleveland, USA, (2006), p 785.Google Scholar
  12. 12.
    Gaston A, Sánchez Sarmiento G, and Sylvestre Begnis J S, Lat Am Appl Res 38 (2008) 259.Google Scholar
  13. 13.
    Glaser B, Gornerup M, and Sichen D, Steel Res Int 82 (2011) 1425.CrossRefGoogle Scholar
  14. 14.
    Diniz I, Da Silva C, Da Silva I, Rodriguez Ferreira E, and Seschadri V, Adv Mater Res 1125 (2015) 166.CrossRefGoogle Scholar
  15. 15.
    Li G, Liu J, and Jiang G, Adv Mech Eng 6 (2015) 1.Google Scholar
  16. 16.
    Tripathi A, Kumar Saha J, Bhadur Singh J, and Kumar Ajmani S, ISIJ Int 52 (2012) 1591.CrossRefGoogle Scholar
  17. 17.
    Zhang S F, Wen L Y, Bai C G, Chen D F, and Long Z J, Appl Math Model 33 (2009) 2646.CrossRefGoogle Scholar
  18. 18.
    Castillejos A H, Salcudean M E, and Brimacombe J K, Metall Trans B 20 (1989) 603.CrossRefGoogle Scholar
  19. 19.
    Austin P R, Camplin J M, Herbertson J, and Taggart I J, ISIJ Int 32 (1992) 196.CrossRefGoogle Scholar
  20. 20.
    Chakraborty S, and Sahai Y, Metall Mater Trans B, 23 (1992) 135.CrossRefGoogle Scholar
  21. 21.
    Mazumdar D, and Guthrie R I L, ISIJ Int 35 (1995) 1.CrossRefGoogle Scholar
  22. 22.
    Krishnapisharody K, and Irons G, Metall Mater Trans B 37 (2006) 763.CrossRefGoogle Scholar
  23. 23.
    Peranandhanthan M, and Mazumdar D, ISIJ Int 50 (2010) 1622.CrossRefGoogle Scholar
  24. 24.
    Maruyama A, and Iguchi M, JSEM 12 (2012) 7.Google Scholar
  25. 25.
    Li M, Liu Z, and Li B, ISIJ Int 55 (2015) 1337.CrossRefGoogle Scholar
  26. 26.
    Mazumdar D, Dhandapani P, and Sarvanakumar R, ISIJ Int 57 (2017) 286.CrossRefGoogle Scholar
  27. 27.
    Lv N, Wu L, Wang H, Dong Y, and Su C, J. Iron Steel Res Int 24 (2017) 243.CrossRefGoogle Scholar
  28. 28.
    Ilegbusi O J, and Szekely J, Trans Iron Steel Inst Jpn 27 (1987) 563.CrossRefGoogle Scholar
  29. 29.
    Subagyo, Brooks G A, and Irons G A, ISIJ Int 43 (2003) 262.Google Scholar
  30. 30.
    Krishnapisharody K, and Irons G A, ISIJ Int 48 (2008) 1807.CrossRefGoogle Scholar
  31. 31.
    Krishnapisharody K, and Irons G A, Metall Mater Trans B 46B (2015) 191.CrossRefGoogle Scholar
  32. 32.
    Jonsson L, and Jonsson P, ISIJ Int 36 (1996) 1127.CrossRefGoogle Scholar
  33. 33.
    Pan Y, Grip C, and Björkman B, Scand J Metall 32 (2003) 71.CrossRefGoogle Scholar
  34. 34.
    Ganguly S, and Chakraborty S, ISIJ Int 44 (2004) 537.CrossRefGoogle Scholar
  35. 35.
    Llanos C A, García S, Ramos-Banderas J A, Barreto J J, and Solorio G, ISIJ Int 50 (2010) 396.CrossRefGoogle Scholar
  36. 36.
    Li B, Yin H, Zhou C, and Tsukihashi F, ISIJ Int 48 (2008) 1704.CrossRefGoogle Scholar
  37. 37.
    Liu H, Qi Z, and Xu M, Steel Res Int 82 (2011) 440.CrossRefGoogle Scholar
  38. 38.
    Liu Y, He Z, and Pan L, Adv Mech Eng 2014 (2014) 1.Google Scholar
  39. 39.
    Li L, Liu Z, Cao M, and Li B, JOM 67 (2015) 1459.CrossRefGoogle Scholar
  40. 40.
    Kulju T, Ollila S, Keiski R, and Muurinen E, IFAC-Pap OnLine 48 (2015) 1.CrossRefGoogle Scholar
  41. 41.
    Singh U, Anapagaddi R, Mangal S, Padmanabhan K A, and Singh A K, Metall Mater Trans B 47 (2016) 1804.CrossRefGoogle Scholar
  42. 42.
    Al-Harbi M. N., Simulation of Ladle Degassing in Steel Making Process, Ph D Thesis, University of Leicester, United Kingdom (2007).Google Scholar
  43. 43.
    Maldonado-Parra F D, Ramírez-Argáez M A, Nava A, and González C, ISIJ Int 51 (2011) 1110.CrossRefGoogle Scholar
  44. 44.
    González H, Ramos-Banderas J A, Torres-Alonso E, Solorio-Díaz G, and Hernández-Bocanegra C A, J Iron Steel Res Int 24 (2017) 888.CrossRefGoogle Scholar
  45. 45.
    Van Doormaal J P, and Raithby G D, Numer Heat Transf 7 (1984) 147.Google Scholar
  46. 46.
    Launder B E, and Spalding D B, Comput Methods Appl Mech Eng 3 (1974) 269.CrossRefGoogle Scholar
  47. 47.
    Hirt C W, and Nichols B D, J Comput Phys 39 (1981) 201.CrossRefGoogle Scholar
  48. 48.
    Howell J R, Siegel R, and Pinar Mengüc M, Thermal Radiation Heat Transfer. CRC Press, Washington DC. (1992) p 619.Google Scholar
  49. 49.
    Cheng P, AIAA J 2 (1964) 1662.CrossRefGoogle Scholar
  50. 50.
    Jönsson P G, Jonsson L, and Sichen D, ISIJ Int 37 (1997) 484.CrossRefGoogle Scholar
  51. 51.
    Turkdogan E T, Fundamentals of Steelmaking, Maney Publishing, Leeds (2010) p 247.Google Scholar
  52. 52.
    González-Bernal R, Solorio-Díaz G, Ramos-Banderas A, Torres-Alonso E, Hernández-Bocanegra C A, and Zenit R, Steel Res Int 89 (2017) 1.Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.Tecnológico Nacional de MéxicoInstituto Tecnológico de MoreliaMoreliaMexico
  2. 2.CATEDRAS-CONACyTBenito JuárezMexico
  3. 3.School of ChemistryNational Autonomous University of MexicoMexicoMexico

Personalised recommendations