Advertisement

Effect of Power Input on Metallurgical and Mechanical Characteristics of Inconel-625 Welded Joints Processed Through Microwave Hybrid Heating

  • Ravindra I. BadigerEmail author
  • S. Narendranath
  • M. S. Srinath
  • Ajit M. Hebbale
Technical Paper
  • 15 Downloads

Abstract

In the present study, welding of Inconel-625 through the use of microwave hybrid heating (MHH) has been achieved at two power levels 600 W and 900 W in a low-cost home microwave oven. Nickel-based powder EWAC was used as filler interface between faying surfaces. Effect of power variation on the metallurgical and mechanical characteristics of the microwave welded joints has been investigated. Developed joints were characterized through XRD, optical microscope, SEM, universal testing machine and Vickers microhardness tester. XRD study of the weld zone indicated the formation of various carbides and intermetallics. Joint microstructures witnessed a completely fused weld interface without any interfacial cracks. EDS analysis of the joint microstructure revealed lesser amount of segregation of niobium and molybdenum with the specimens developed at 600 W which could be attributed to the lower heat input associated with 600 W power that also resulted in fine grain structure. Further, the specimens processed at 600 W exhibited better tensile and flexural properties when compared to their counterparts produced at 900 W power. Fractography study of the specimens revealed a combined ductile and brittle fracture.

Keywords

Inconel-625 Microwave hybrid heating EWAC Tensile strength Flexural strength 

References

  1. 1.
    Rai S K, Kumar A, Shankar V, Jayakumar T, Rao B S and Raj B, Scr Mater 51 (2004) 59.CrossRefGoogle Scholar
  2. 2.
    Song K H and Nakata K, Mater Trans 50 (2009) 2498.CrossRefGoogle Scholar
  3. 3.
    Bansal A, Sharma A K, Kumar P and Das S, JoM 67 (2015) 2087.CrossRefGoogle Scholar
  4. 4.
    Ramkumar K D, Abraham W S, Viyash V, Arivazhagan N, and Rabel A M, J Manuf Process 25 (2017) 306.CrossRefGoogle Scholar
  5. 5.
    Cieslak M J, Weld J 70 (1991) 49s.Google Scholar
  6. 6.
    DuPont J N, Notis M R, Marder A R, Robino C V, and Michael J R, Metall Mater Trans A 29 (1998) 2785.CrossRefGoogle Scholar
  7. 7.
    DuPont J N, Metall Mater Trans A 27 (1996) 3612.CrossRefGoogle Scholar
  8. 8.
    Patterson R, and Milewski J O, Weld J 64 (1985) 227.Google Scholar
  9. 9.
    Cieslak M J, Hills C R, and Headley T J, Microbeam Anal, San Francisco Press, Inc., San Francisco (1986), p 69.Google Scholar
  10. 10.
    Sridhar R, Ramkumar K D, and Arivazhagan N, Acta Metall Sin 27 (2014) 1018.CrossRefGoogle Scholar
  11. 11.
    Shakil M, Ahmad M, Tariq N H, Hasan B A, Akhter J I, Ahmed E, Mehmood M, Choudhry M A, and Iqbal M, Vacuum 110 (2014) 121.CrossRefGoogle Scholar
  12. 12.
    Ramkumar K D, Sridhar R, Periwal S, Oza S, Saxena V, Hidad P and Arivazhagan N, Mater Des 68 (2015) 158.CrossRefGoogle Scholar
  13. 13.
    Kumar K G, Ramkumar K D, and Arivazhagan N, J Mech Sci Technol 29 (2015) 1039.CrossRefGoogle Scholar
  14. 14.
    Wilson I L, Gourley R G, Walkosak R M, and Bruck G J Proc Int Symp Metall Appl Superalloys 718, 625 Var. Deriv. 718 (1991) 735.Google Scholar
  15. 15.
    Henderson M B, Arrell D, Larsson R, Heobel M, and Marchant G, Sci Technol Weld Joi 9 (2004) 13.CrossRefGoogle Scholar
  16. 16.
    Bansal A, Sharma A K, Kumar P, and Das S, Mater Charact 91 (2014) 31.CrossRefGoogle Scholar
  17. 17.
    Clark D E, and Sutton W H, Annu Rev Mater Sci 26 (1996) 299.CrossRefGoogle Scholar
  18. 18.
    Cheng J, Agrawal D, Zhang Y, and Roy R, Mater Lett 56 (2002) 587.CrossRefGoogle Scholar
  19. 19.
    Brosnan K H, Messing G L, and Agarwal D K, J Am Ceram Soc 86 (2003) 1307.CrossRefGoogle Scholar
  20. 20.
    Menezes R R, and Kiminami R H, J Mater Process Technol 203 (2008) 513.CrossRefGoogle Scholar
  21. 21.
    Ebadzadeh T, and Marzban-Rad E, Mater Charact 60 (2009) 69.CrossRefGoogle Scholar
  22. 22.
    Roy R, Agrawal D K, Cheng J, and Gedevanishvili S, Nature 399 (1999) 668.CrossRefGoogle Scholar
  23. 23.
    Sharma A K, Srinath M S and Kumar P. Microwave joining of metallic materials. Indian Patent 1994/Del/2009.Google Scholar
  24. 24.
    Srinath M S, Sharma A K, and Kumar P, Mater Des 32 (2011) 2685.CrossRefGoogle Scholar
  25. 25.
    Srinath M S, Sharma A K, and Kumar P, J Manuf Process 13 (2011) 141.CrossRefGoogle Scholar
  26. 26.
    Bansal A, Sharma A K, Das S and Kumar P. Proc. Inst. Mech. Eng., Part L 230 (2016) 939.Google Scholar
  27. 27.
    Badiger R I, Narendranath S, and Srinath M S, Proc Inst Mech Eng, Part B (2017) 0954405417697350.Google Scholar
  28. 28.
    Bagha L, Sehgal S, Thakur A, and Kumar H, J Manuf Process 25 (2017) 290.CrossRefGoogle Scholar
  29. 29.
    Gamit D, Mishra R R, and Sharma A K, J Manuf Process 27 (2017) 158.CrossRefGoogle Scholar
  30. 30.
    Caiazzo F, Alfieri V, Cardaropoli F, and Sergi V, Opt Laser Technol 93 (2017) 180.CrossRefGoogle Scholar
  31. 31.
    Min Li, Zheng W J, Xiang J Z, Song Z G, En-xiang P U, and Han F, J Iron Steel Res Int 23 (2016) 1111.CrossRefGoogle Scholar
  32. 32.
    Mondal A, Agrawal D, and Upadhyaya A, J Microwave Power 43 (2008) 5.Google Scholar
  33. 33.
    Silva C C, De Miranda H C, Motta M F, Farias J P, Afonso C R, and Ramirez A J, J Mater Res Technol 2 (2013) 228.CrossRefGoogle Scholar
  34. 34.
    Janaki Ram G D, Venugopal Reddy A, Prasad Rao K, and Madhusudhan Reddy G, Sci Technol Weld Joining 9 (2004) 390.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  • Ravindra I. Badiger
    • 1
    Email author
  • S. Narendranath
    • 1
  • M. S. Srinath
    • 2
  • Ajit M. Hebbale
    • 3
  1. 1.Department of Mechanical EngineeringNational Institute of Technology KarnatakaSurathkalIndia
  2. 2.Department of Industrial and Production EngineeringMalnad College of EngineeringHassanIndia
  3. 3.Department of Mechanical EngineeringNMAM Institute of TechnologyNitteIndia

Personalised recommendations