Photonic, Low-Friction and Antimicrobial Applications for an Ancient Icosahedral/Quasicrystalline Nano-composite Bronze Alloy

  • J. A. Sekhar
  • A. S. Mantri
  • Sabyasachi Saha
  • R. Balamuralikrishnan
  • P. Rama Rao
Technical Paper


The recent discovery of an ancient mirror bronze alloy comprising of nano-quasicrystalline features is pursued further in this article. We have reported new evidence that indicates that two or more types of quasicrystalline phases may be present in the alloy along with hints of a glassy phase. The finding opens the possibilities of various new uses for this alloy. The distribution of the various phases and their morphological patterns that result from the solidification sequence of the alloy are suggestive of unique photonic applications such as optical gratings and optical cloaking. Low-friction applications at a high pair velocity are also possible with this alloy based on the modulus and the surface texture. The wear rate of many quasicrystalline phase containing alloys is low because of their minimal strain-rate softening tendencies. Based on the nano-crystal distribution and compared to known alloys, the use of the alloy is also contemplated for contact-surface antimicrobial uses. We have also reported findings of the possible evidence of an icosahedral structure even after some of the tin is “boiled” away leaving behind a copper-tin-zinc variation of the original alloy. New high-resolution electron microscope lattice imaging microstructures and diffraction patterns of the original mirror alloy have been discussed. A solidification sequence that can preserve the icosahedral features across the atomic stacking scale, the nanometer scale of the crystals and the micrometer scale of cells/dendrites has been proposed. Regardless, there is the difficulty of completely characterizing all phases in this complex mirror alloy by electron microscopy methods alone. X-ray diffraction, fracture surface analysis, thermal transformation analysis, ellipsometric and optical imaging methods are also employed for the characterization. The microstructures are compared with patterns of similar Fibonacci analogs in flowers and petals.


Bronze Quasicrystalline Nano-crystals Photonics Antimicrobial Friction Energy efficiency Mirror Casting Solidification Archeometallurgy 



SS and RB gratefully acknowledge permission from Director DMRL for the publication. JS and SM gratefully acknowledge MHI Inc. funding provided by Dr. A. A. Vissa; MHI-03/2009/2018. Appreciation for assistance provided by Director ARCI is expressed by PRR. We acknowledge help by S. Yamjala for the manuscript. JS and PRR acknowledge discussions on quasicrystalline materials with Late Professor P. Ramachandra Rao, Professor ESR Gopal, Dr. T. Rajasekharan and Mr. K. Narashima Rao. The authors acknowledge JNCASR, Bangalore, for access to the microscopy facility to carry out the HREM work. JS expresses his gratitude for the personal lifelong support given to him by Professor EC Subbarao to whom this journal issue is dedicated. All the authors wish Professor Subbarao a very happy 90th birthday.


  1. 1.
    Sekhar J A, Mantri A S, Yamjala S, Saha S, Balamuralikrishnan R, and Rao P R, JOM 67 (2015) 2976.CrossRefGoogle Scholar
  2. 2.
  3. 3.
    Nazimudeen E A, Girish T E, and Abraham S, Mater Today Commun 16 (2018) 314.CrossRefGoogle Scholar
  4. 4.
    Srinivasan S, and Glover I, Curr Sci 93 (2007) 35.Google Scholar
  5. 5.
    Pillai R, JOM 44 (1992) 38.CrossRefGoogle Scholar
  6. 6.
    Alex S, Chattopadhyay K, and Basu B, Sol Energy Mater Sol Cells 149 (2016) 66.CrossRefGoogle Scholar
  7. 7.
    Raynor G V, The Cu-Sn Phase Diagram, Annotated Equilibrium Diagram Series, vol. 2, The Institute of Metals, London (1944).Google Scholar
  8. 8.
    Saunders N, and Miodownik A P, Bull Alloy Phase Diagr 11 (1990) 278.CrossRefGoogle Scholar
  9. 9.
    Hansen M, Constitution of Binary Alloys, 2nd ed., McGraw Hill Book Co., New York, (1958) p 633.Google Scholar
  10. 10.
    Fürtauer S, Li D, Cupid D, and Flandor H, Intermetallics 34 (2013) 142.CrossRefGoogle Scholar
  11. 11.
    Cahn R W, The Coming of Materials Science, Pergamon Press, Oxford (2002) p 79. (Original reference work cited in book is ascribed to Charles Thomas Heycock (1858–1931) and Francis Henry Neville (1847–1915)).Google Scholar
  12. 12.
    Shechtman D, Blech I, Gratias D, and Cahn J W, Phys Rev Lett 53 (1984) 1951.CrossRefGoogle Scholar
  13. 13.
    Sekhar J A, Rao P, and Trivedi R, Scr Metall 21 (1987) 543.CrossRefGoogle Scholar
  14. 14.
    Tsai A P, Guo J Q, Abe E, Takakura H, and Sato T J, Nature 408 (2000) 537.CrossRefGoogle Scholar
  15. 15.
    Dubost B, Lang J M, Tanaka M, Sainfort P, and Audier M, Nature 324 (1986) 48.CrossRefGoogle Scholar
  16. 16.
    Rao K N, and Sekhar J A, Scr Metall 21 (1987) 805.CrossRefGoogle Scholar
  17. 17.
    Watanabe S, and Saito T, Trans Jpn Inst Met 13 (1972) 186.CrossRefGoogle Scholar
  18. 18.
    Yazawa A, Itagaki K, and Azakami T, Trans Jpn Inst Met 16 (1975) 687.CrossRefGoogle Scholar
  19. 19.
    Kawai Y, Kishimoto M, and Tsuru H, J Jpn Inst Met 37 (1973) 668.CrossRefGoogle Scholar
  20. 20.
    Fima P, Appl Surf Sci 257 (2010) 468.CrossRefGoogle Scholar
  21. 21.
    Pillai S G K, Pillai R M, and Damodaran A D, JOM (1992) 44: 38. Scholar
  22. 22.
    Meeks N, Archaeometry, 28 (1986) 133.CrossRefGoogle Scholar
  23. 23.
    Chattopadhyay K, Lele S, Ranganathan S, Subbanna G N, and Thangaraj N, Curr Sci 54 (1985) 895.Google Scholar
  24. 24.
    Rothery W H, and Raynor G, The Structure of Metals and Alloys, The Institute of Metals, London (1969).Google Scholar
  25. 25.
    Song J, Yu J, and Lee T, Scr Mater 51 (2004) 167.CrossRefGoogle Scholar
  26. 26.
    Mullis A M, Acta Mater 47 (1999) 1783.CrossRefGoogle Scholar
  27. 27.
    Reddy G S, and Sekhar J A, Acta Metall 37 (1989) 1509.CrossRefGoogle Scholar
  28. 28.
    De Groh H C, Metall Trans A 25 (1994) 2507.CrossRefGoogle Scholar
  29. 29.
    Rajasekharan T, and Sekhar J A, Scr Metall 20 (1986) 235.CrossRefGoogle Scholar
  30. 30.
    Akahama Y, Mori Y, Kobayashi M, Kawamura H, Kimura K, and Takeuchi S, J Phys Soc Jpn 60 (1991) 1988.CrossRefGoogle Scholar
  31. 31.
    Gopal E S R, Baranidharan S, and Sekhar J A, Mater Sci Eng 99 (1988) 413.CrossRefGoogle Scholar
  32. 32.
    Parthasarathy G, Gopal E, Krishnamurthy H, Pandit R, and Sekhar J A, Curr Sci 55 (1986) 517.Google Scholar
  33. 33.
    Sekhar J, Rao K, Rajasekharan T, and Bai V S, Mater Res Bull 20 (1985) 1109.CrossRefGoogle Scholar
  34. 34.
    Schaefer R, Bendersky L, Shechtman D, Boettinger W, and Biancaniello F, Metall Trans A 17 (1986) 2117.CrossRefGoogle Scholar
  35. 35.
    Kurtuldu G, Sicco A, and Rappaz M, Acta Mater 70 (2014) 240.CrossRefGoogle Scholar
  36. 36.
    Schaefer R, Bendersky L, and Biancaniello F, in Workshop on Aperiodic Crystals, Eds. Michel L and Gratias D, J Physique Colloq 47 (1986) C3 311.Google Scholar
  37. 37.
    Sekhar J A, and Rajasekharan T, Nature 320 (1986) 153.CrossRefGoogle Scholar
  38. 38.
    Sekhar J A, J Mater Sci 46 (2011) 6172.Google Scholar
  39. 39.
    Bensah Y D, and Sekhar J A, Interfacial instability of a planar interface and diffuseness at the solid-liquid interface for pure and binary materials, (2016) Accessed Aug 2018.
  40. 40.
    Ghulinyan M, (2013) Accessed Aug 2018.
  41. 41.
    Boriskina S V, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts (2014) Accessed Aug 2018.
  42. 42.
    Huang X, Lai Y, Hang Z H, Zheng H, and Chan C T, Nat Mater 10 (2011) 582.CrossRefGoogle Scholar
  43. 43.
    Dong J W, Chang M L, Huang X Q, Hang Z H, Zhong Z C, Chen W J, Huang Z Y, and Chan C T, Phys Rev Lett 114 (2015) 163901.CrossRefGoogle Scholar
  44. 44.
    Subbarao E C, Key Eng Mater 380 (2008) 81.CrossRefGoogle Scholar
  45. 45.
    Bhaduri S B, and Sekhar J A, Nature 327 (1987) 609.CrossRefGoogle Scholar
  46. 46.
    Sekhar J A, Curr Opin Chem Eng 19 (2018) 94.CrossRefGoogle Scholar
  47. 47.
    Yadav T P, and Mukhopadhyay N K, Curr Opin Chem Eng 19 (2018) 163.CrossRefGoogle Scholar
  48. 48.
    Dubois J M, Phys Scr T49A (1993).Google Scholar
  49. 49.
    Balagurusamy V S K, Srinivasan A, Baranidharan S, and Gopal E S R, J Phys F: Meter Phys 18 (1988) L105.CrossRefGoogle Scholar
  50. 50.
    Joardar J, Lele S, Rao P R, Notes on Thermodynamics of Materials, T.R. Anatharaman Educational and Research Foundation, Hyderabad, (2016).Google Scholar
  51. 51.
    Fabietti L M, and Sekhar J A, Metall Trans 23 (1992) 3361.Google Scholar
  52. 52.
    Connelly M C, Reddy G S, Nadagouda M N, and Sekhar J A, Clean Technol Environ Polic 19 (2017) 845.CrossRefGoogle Scholar
  53. 53.
    Reddy G S, Sekhar J A, and Rao P V, Scr Metall 21 (1987) 13.CrossRefGoogle Scholar
  54. 54.
    Hu Y J, Wen D D, Jiang Y Q, Deng Y H, and Peng P, Trans Nonferrous Metals Soc China 25 (2015) 533.CrossRefGoogle Scholar
  55. 55.
    Bindi L, Lin C, Ma C, and Steinhardt P J, Sci Rep 6 (2016) 38117.CrossRefGoogle Scholar
  56. 56.
    Samavat F, Tavakoli M H, Habibi S, Jaleh B, Ahmad P T, Open J Phys Chem 2 (2012) 7.CrossRefGoogle Scholar
  57. 57.
    Sekhar J, Mater Res Bull 17 (1982) 837.CrossRefGoogle Scholar
  58. 58.
    Orera V M, and Merino R I, Boletín de la Sociedad Española de Cerámica y Vidrio 54 (2015) 1.CrossRefGoogle Scholar
  59. 59.
    Greenwood J A, and Williamson J B P, Proc R Soc Lond A 295 (1966) 300.CrossRefGoogle Scholar
  60. 60.
    Oppenheim J, Ma C, Hu J, Bindi L, Steinhardt P J, and Asimow P D, Sci Rep 7 (2017) 15629.CrossRefGoogle Scholar
  61. 61.
    Flemings M C, Solidification Processing. McGraw Hill, New York (1974).CrossRefGoogle Scholar
  62. 62.
    Kurz W, Fisher T J, Fundamentals of Solidification, Trans Tech Publications, Switzerland, (2003).Google Scholar
  63. 63.
    Sekhar J A, Curr Sci 54 (1985) 904.Google Scholar
  64. 64.
    Rao K N, and Sekhar J A, J Mater Sci Lett 5 (1986) 1186.CrossRefGoogle Scholar
  65. 65.
    Singh A, and Ranganathan S, J Mater Res 14 (1999) 4182.CrossRefGoogle Scholar
  66. 66.
    Cahn J W, Schectman D, and Gratis D, J Mater Res 1 (1986) 13.CrossRefGoogle Scholar
  67. 67.
    Kuo K H, J Non-Cryst Solids 117-118 (1990) 756.CrossRefGoogle Scholar
  68. 68.
    Brühne S, Uhrig E, Gross C, and Assmus W, Cryst Res Technol 38 (2003) 1023.CrossRefGoogle Scholar
  69. 69.
    Reddy G S, and Sekhar J A, J Mater Sci 20 (1985) 3535.CrossRefGoogle Scholar
  70. 70.
    Scacchi A, and Brader J M, J Phys: Condens Matter 30 (2018) 095102.Google Scholar
  71. 71.
    Phi ΦThe Golden Ratio, (2018).
  72. 72.
    Rodrigues P, Sunderaraman D., Divaker R, and Raghunathan V S, Chem Sustain Dev B (2000) 69–72.Google Scholar
  73. 73.
    Zhou D S, Li D X, Ye H Q, and Kuo K H, Philos Mag Lett 56 (1987) 209. Doi: Scholar
  74. 74.
    Yamamoto K, Kimura Y, and Mishima Y, Mater Trans 45 (2004) 357.Google Scholar
  75. 75.
    Niikura B A, Tsai A, Inoue A, and Masumoto T, Philos Mag Lett 69 (1994) 351.CrossRefGoogle Scholar
  76. 76.
    Yuan G, Amiya K, Kato H, and Inoue A, J Mater Res 19 (2004) 1531.CrossRefGoogle Scholar
  77. 77.
    Tammes P M L, Recueil des Travaux Botanique Neerlandais 27 (1930) 1.Google Scholar
  78. 78.
    Homberg K, and Erdemir A, Friction 5 (2017) 263. Doi: Scholar
  79. 79.
    Geng J, Teng X, Zhou G, Zhao D, and Leng J, J Mater Res 29(2014) 942. Doi: Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  • J. A. Sekhar
    • 1
    • 2
    • 3
  • A. S. Mantri
    • 2
  • Sabyasachi Saha
    • 4
  • R. Balamuralikrishnan
    • 4
  • P. Rama Rao
    • 5
  1. 1.Institute of Texture, Thermodynamics and DesignCincinnatiUSA
  2. 2.University of CincinnatiCincinnatiUSA
  3. 3.MHI Inc. CincinnatiCincinnatiUSA
  4. 4.Defence Metallurgical Research LaboratoryHyderabadIndia
  5. 5.International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI)HyderabadIndia

Personalised recommendations