Advertisement

Conventionally Sintered Hydroxyapatite–Barium Titanate Piezo-Biocomposites

  • Prabaha Sikder
  • Naresh Koju
  • Boren Lin
  • Sarit B. Bhaduri
Technical Paper
  • 7 Downloads

Abstract

The central goal of this initial effort is to develop and characterize distinctive piezo-biocomposites as load-bearing orthopedic implants. The motivation is derived from the fact that mammalian bone is a piezoelectric material and this property is helpful in the natural healing of fractured bone. We have employed a cost-effective and industrially viable technique—conventional sintering to consolidate specific compositions of hydroxyapatite (HA) and barium titanate (BT). HA is the primary mineral constituent of mammalian bone but is not piezoelectric. On the contrary, BT is well known for its piezoelectric properties. Their combination creates piezo-biocomposites. The sintering is reactive in nature as BT decomposes into several compounds. Average grain sizes of piezo-biocomposites lie in the range of 1.75–1.9 µm. Interestingly, 15% compressive strength enhancement is noted in the case of HA-40 wt% BT as compared to HA. In vitro examinations reveal favorable bioactivity and biocompatible nature of the composites. These results show that conventionally sintered HA-BT piezo-biocomposites can qualify as candidate materials for load-bearing implants at affordable prices.

Keywords

Conventional sintering Hydroxyapatite Barium titanate Orthopedic implants 

Notes

Acknowledgements

SBB is humbled by being able to contribute to this issue in honor of Prof. E. C. Subbarao. He has many fond memories of interactions during many trips that occurred between DMRL, Hyderabad, and TRDDC, Pune, between years 1983 and 1989. This work was supported by the NSF Grant No. 1706513.

References

  1. 1.
    Simon J, and Simon B, Electrical bone stimulation. In Musculoskeletal Tissue Regeneration Human Press (2008) 259.Google Scholar
  2. 2.
    Carrodeguas R G, V’ zquez B, del Barrio J S R, and de la Cal A M, Int J Polym Mater 51 (2002) 591.Google Scholar
  3. 3.
    Fukada E, and Yasuda I, J Phys Soc Jpn 12 (1957) 1158.CrossRefGoogle Scholar
  4. 4.
    Fukada E, and Yasuda I, Jpn J Appl Phys 3 (1964) 117.CrossRefGoogle Scholar
  5. 5.
    Bassett C A L, and Becker R O, Science 137 (1962) 1063.CrossRefGoogle Scholar
  6. 6.
    Bassett C A L, Sci Am 213 (1965) 18.CrossRefGoogle Scholar
  7. 7.
    Fredericks D C, Smucker J, Petersen E B, Bobst J A, Gan J C, Simon B J, and Glazer P, Spine 32 (2007) 174.CrossRefGoogle Scholar
  8. 8.
    Dubey A K, EA A, Balani K, and Basu B, J Am Ceram Soc 96 (2013) 3753.CrossRefGoogle Scholar
  9. 9.
    Akao M, Aoki H, and Kato K, J Mater Sci 16 (1981) 809.CrossRefGoogle Scholar
  10. 10.
    Bellucci D, Desogus L, Montinaro S, Orrù R, Cao G, and Cannillo V, J Eur Ceram Soc 37 (2017) 1723.CrossRefGoogle Scholar
  11. 11.
    Karimzadeh A, Ayatollahi M R, Bushroa A R, and Herliansyah M K, Ceram Int 40 (2014) 9159.CrossRefGoogle Scholar
  12. 12.
    Park J B, Von Recum A F, Kenner G H, Kelly B J, Coffeen W W, and Grether M F, J Biomed Mater Res Part A 14 (1980) 269.CrossRefGoogle Scholar
  13. 13.
    Jianqing F, Huipin Y, and Xingdong Z, Biomaterials 18 (1997) 1531.CrossRefGoogle Scholar
  14. 14.
    Park J B, Kelly B J, Kenner G H, Von Recum A F, Grether M F, and Coffeen W W, J Biomed Mater Res Part A 15 (1981) 103.CrossRefGoogle Scholar
  15. 15.
    Nacer R S, Silva B A K D, Poppi R R, Silva D K M, Cardoso V S, Delben J R J, and Delben A A S T, Acta Cir Bras 30 (2015) 255.CrossRefGoogle Scholar
  16. 16.
    Dubey A K, Thrivikraman G, and Basu B, J Mater Sci Mater Med 26 (2015) 1.Google Scholar
  17. 17.
    Dubey A K, and Basu B, J Am Ceram Soc 97 (2014) 481.CrossRefGoogle Scholar
  18. 18.
    Grether M F, Coffeen W W, Kenner G H, and Park J B, Biomater Med Devices Artif Organs 8 (1980) 265.CrossRefGoogle Scholar
  19. 19.
    Park Y J, Hwang K S, Song J E, Ong J L, and Rawls H R, Biomaterials 23 (2002) 3859.CrossRefGoogle Scholar
  20. 20.
    Ciofani G, Ricotti L, Canale C, D’Alessandro D, Berrettini S, Mazzolai B, and Mattol, V, Coll Surf B Biointerfaces 102 (2013) 312.CrossRefGoogle Scholar
  21. 21.
    Ciofani G, Danti S, D’Alessandro D, Moscato S, Petrini M, and Menciassi A, Nanoscale Res Lett 5 (2010) 1093.CrossRefGoogle Scholar
  22. 22.
    Dubey A K, and Kakimoto K I, Mater Sci Eng C 63 (2016) 211.CrossRefGoogle Scholar
  23. 23.
    Mallik P K, and Basu B, J Biomed Mater Res Part A 102 (2014) 842.CrossRefGoogle Scholar
  24. 24.
    Thrivikraman G, Mallik P K, and Basu B, Biomaterials 34 (2013) 7073.CrossRefGoogle Scholar
  25. 25.
    Ravikumar K, Mallik P K, and Basu B, J Eur Ceram Soc 36 (2016) 805.CrossRefGoogle Scholar
  26. 26.
    Prakasam M, Albino M, Lebraud E, Maglione M, Elissalde C, and Largeteau A, J Am Ceram Soc 100 (2017) 2621.CrossRefGoogle Scholar
  27. 27.
    Koju N, Sikder P, Gaihre B, and Bhaduri S B, Materials 11 (2018) 1258.CrossRefGoogle Scholar
  28. 28.
    Ruys A J, Wei M, Sorrell C C, Dickson M R, Brandwood A, and Milthorpe B K, Biomaterials 16 (1995) 409.CrossRefGoogle Scholar
  29. 29.
    Champion E, Acta Biomater 9 (2013) 5855.CrossRefGoogle Scholar
  30. 30.
    Sikder P, Sarkar S, Biswas KG, Das S, Basu S, and Das PK, Mater Chem Phys 170 (2016) 99.CrossRefGoogle Scholar
  31. 31.
    Sikder P, Pramanick A, Sarkar S, Das S, Dey P P, and Das P K. Adv Appl Ceram 114 (2015) 448.CrossRefGoogle Scholar
  32. 32.
    Boroujeni N M, Zhou H, Luchini T J F, and Bhaduri S B, J Biomed Mater Res Part B 102 (2014) 260.CrossRefGoogle Scholar
  33. 33.
    Spiegler R, Schmauder S, and Sigl L S, J Hard Mater 1 (1990) 147.Google Scholar
  34. 34.
    Jalota S, Bhaduri S B, and Tas A C, J Mater Sci Mater Med 17 (2006) 697.CrossRefGoogle Scholar
  35. 35.
    Sikder P, Koju N, Ren Y, Goel V K, Phares T, Lin B, and Bhaduri S B, Surf Coat Technol 342 (2018) 342.CrossRefGoogle Scholar
  36. 36.
    Zhou H, Luchini T J F, Boroujeni N M, Agarwal A K, Goel V K, and Bhaduri S B, Mater Sci Eng C 50 (2015) 45.CrossRefGoogle Scholar
  37. 37.
    Sikder P, Grice C R, Lin B, Goel V K, and Bhaduri S B, ACS Biomater Sci Eng 4 (2018) 2767.CrossRefGoogle Scholar
  38. 38.
    Rehman I, and Bonfield W, J Mater Sci Mater Med 8 (1997) 1.Google Scholar
  39. 39.
    Sikder P, and Bhaduri S B, J Am Ceram Soc 101 (2018) 2537.CrossRefGoogle Scholar
  40. 40.
    Koju N, Sikder P, Ren Y, Zhou H, and Bhaduri S B, Curr Opin Chem Eng 15 (2017) 49.CrossRefGoogle Scholar
  41. 41.
    Monmaturapoj N, and Yatongchai C, J Metals Mater Miner 20 (2017).Google Scholar
  42. 42.
    Dubey A K, Mallik P K, Kundu S, and Basu B, J Eur Ceram Soc 33 (2013) 3445.CrossRefGoogle Scholar
  43. 43.
    Ren Y, Sikder P, Lin B, and Bhaduri S B, Mater Sci Eng C 85 (2018) 107.CrossRefGoogle Scholar
  44. 44.
    Baxter F R, Turner I G, Bowen C R, Gittings J P, and Chaudhuri J B, J Mater Sci Mater Med 20 (2009) 1697.Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.Department of Mechanical Industrial and Manufacturing EngineeringThe University of ToledoToledoUSA
  2. 2.Department of BioengineeringThe University of ToledoToledoUSA

Personalised recommendations