Degradation Behaviour of Nanostructured CeO2 Films on Superalloy

  • Shafaq Ashraf Lone
  • Muzzamil Ahmad Eatoo
  • Atikur RahmanEmail author
Technical Paper


The present work proposes the development of nanostructured oxidation barrier film on nickel-based superalloy Superni 750 by electroless process. The oxidation barrier film is intended to increase the life of the thermal barrier coatings by acting as a diffusion barrier to the movement of anions and cations. Cerium oxide was deposited on the substrate at different concentrations. Cyclic high-temperature oxidation in air was conducted at 900 °C for 100 thermal cycles. The nanostructured CeO2 film on Superni 750 substrate was characterized using SEM/EDS and XRD, before and after oxidation. X-ray photoelectron spectroscopy (XPS) was carried out to determine the oxidation state of cerium in the scale formed after oxidation. The coated samples have shown to exhibit improved oxidation resistance as compared to the bare substrate at 900 °C. It was also observed that increasing the Ce ion concentration in the film improves the oxidation resistance by impeding the movement of Ti, Cr and Ni ions (substrate elements) along the grain boundaries in the superalloy. The scale formed on coated samples was found to have a good spallation resistance.


Electroless process Nanostructured CeO2 coatings Cyclic high-temperature oxidation Superalloys 



  1. 1.
    Reed R, The Superalloys: Fundamentals and Applications, Cambridge University Press, Cambridge (2006).CrossRefGoogle Scholar
  2. 2.
    Feuerstein A, Knapp J, Taylor T, Ashary A, Bolcavage A, and Hitchman N, J Therm Spray Technol 17 (2008) 199.CrossRefGoogle Scholar
  3. 3.
    Cao X Q, Vassen R, and Stoever D, J Eur Ceram Soc 24 (2004) 1.CrossRefGoogle Scholar
  4. 4.
    Vaßen R, Jarligo M O, Steinke T, Mack D E, and Stöver D, Surf Coat Technol 205 (2010) 938.CrossRefGoogle Scholar
  5. 5.
    Tamura M, Takahashi M, Ishii J, Suzuki K, Sato M, and Shimomura K, J Therm Spray Technol 8 (1999) 68.CrossRefGoogle Scholar
  6. 6.
    Vassen R, Dietrich M, Lehmann H, Cao X, Pracht G, Tietz F, Pitzer D, and Stöver D, Mater Sci Eng Technol 32 (2001) 673.Google Scholar
  7. 7.
    Wilden J, and Wank A, Mater Sci Eng Technol 32 (2001) 654.Google Scholar
  8. 8.
    Patil S, Kuiry SC, and Seal S, Proc Royal Soc A 460 (2004) 3569.CrossRefGoogle Scholar
  9. 9.
    Moon D P, and Bennett M J, Mater Sci Forum 43 (1989) 269.CrossRefGoogle Scholar
  10. 10.
    Wang F, and Geng S, Surf Eng 19 (2003) 32.CrossRefGoogle Scholar
  11. 11.
    Goyal G, Singh H, and Prakash S, Mater High Temp 27 (2010) 109.CrossRefGoogle Scholar
  12. 12.
    Roy S K, Auddya A, and Bose S K, React Solid 6 (1989) 301.CrossRefGoogle Scholar
  13. 13.
    Lee H, Kim S, Hong Y, Lee Y, Park Y, and Ko K, Surf Coat Technol 173 (2003) 224.CrossRefGoogle Scholar
  14. 14.
    Rahman A, Chawla V, Jayaganthan R, Chandra R, Tiwari V K, and Ambardar R, Surf Eng 28 (2012) 249.CrossRefGoogle Scholar
  15. 15.
    Rahman A, Jayaganthan R, Prakash S, Chawla V, and Chandra R, Surf Eng 27 (2011) 393.CrossRefGoogle Scholar
  16. 16.
    Lin Y B, Chen T F, Tao J, Shen Y Z, and Li H G, Surf Eng 31 (2015) 329.CrossRefGoogle Scholar
  17. 17.
    Zhang J P, Fu Q G, Zhuang L, Chen X, Li H J, Nan X Y, Sun C, and Xie J, Surf Eng 31 (2015) 368.CrossRefGoogle Scholar
  18. 18.
    Sundararajan T, Kuroda S, Kawakita J, and Seal S, Surf Coat Technol 201 (2006) 2124.CrossRefGoogle Scholar
  19. 19.
    Wen M, Gong S, Xu H and Cao X, Surf Coat Technol 200 (2006) 5113.CrossRefGoogle Scholar
  20. 20.
    Lee H, Kim S, Hong Y, Lee Y, Park Y, and Ko K, Surf Coat Technol 173 (2003) 224.CrossRefGoogle Scholar
  21. 21.
    Faraji S, Faraji A H, Noori S R, and Ani F N, Surf Eng 31 (2015) 179.CrossRefGoogle Scholar
  22. 22.
    Rahman A, Jayaganthan R, and Sharma J V N, Surf Eng 30 (2014) 709.CrossRefGoogle Scholar
  23. 23.
    Rahman A, Jayaganthan R, Jain R, Chawla A, Chandra R, and Ambardar R, Surf. Eng. 29 (2013) 440.CrossRefGoogle Scholar
  24. 24.
    Bates B L, Zhang L Z, and Zhang Y, Surf Eng 31 (2015) 202.CrossRefGoogle Scholar
  25. 25.
    Wang H, Zuo D, Yan J, Huang M, and Li X, Oxid Met 74 (2010) 49.CrossRefGoogle Scholar
  26. 26.
    Kofstad P, High Temperature Corrosion, Elsevier Applied Science Publishers Ltd., London-New York (1988).Google Scholar
  27. 27.
    Zou D, Yan D, Xiao L, and Dong Y, Surf Coat Technol 202 (2008) 1928.CrossRefGoogle Scholar
  28. 28.
    Rahman A, and Jayaganthan R, Surf Eng 32 (2014) 771.CrossRefGoogle Scholar
  29. 29.
    Beche E, Charvin P, Perarnau D, Abanades S, and Flamant G, Surf Interface Anal 40 (2008) 264.CrossRefGoogle Scholar
  30. 30.
    Seal S, Nardelli R, Kale A, Desai V, and Armacanqui E, J. Vac. Sci Technol. A 17 (1999) 1109.CrossRefGoogle Scholar
  31. 31.
    Shannon R. D, Acta Crystallogr A 32 (1976) 751.CrossRefGoogle Scholar
  32. 32.
    Pieraggi, B, and Rapp R A, J Electrochem Soc 140 (1993) 2844.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  • Shafaq Ashraf Lone
    • 1
  • Muzzamil Ahmad Eatoo
    • 2
  • Atikur Rahman
    • 1
    Email author
  1. 1.Department of Metallurgical and Materials EngineeringNational Institute of Technology, SrinagarHazratbal, SrinagarIndia
  2. 2.Department of Metallurgical Engineering and Materials ScienceIndian Institute of Technology BombayMumbaiIndia

Personalised recommendations