Advertisement

Blast Furnace Performance Under Varying Pellet Proportion

  • Ashish AgrawalEmail author
Technical Paper
  • 34 Downloads

Abstract

As a promising method to strengthen the blast furnace smelting and to realize reduced fuel operation, high-proportion pellet charging has become the practice of BF ironmaking. Use of pellet gives rise to uniform bed permeability in comparison with iron ore or sinter. This leads to better gas–solid contact resulting in higher productivity at reduced coke and fuel rate. To achieve the desired gas flow distribution, the burden distribution is changed so that the rollability of pellets is encountered and furnace is maintained in stable condition. This paper discusses the effect of pellet charging proportion on working indices, gas utilization, permeability, fuel rate and production rate of blast furnace. The present work is made to understand the effect of replacing the iron ore proportionately by pellets. An attempt is made to understand the effect of increasing the pellet per cent of the burden charge on the blast furnace process parameters. The results are based on the effect observed in the blast furnace operation.

Keywords

Blast furnace Burden Pellet Burden distribution Gas permeability Gas efficiency Above burden probe Working index 

Notes

Acknowledgements

We would like to acknowledge the entire BF operation and technology group of Tata Steel Jamshedpur for extending their operational knowledge. We are also grateful to Automation Division Jamshedpur for providing us the opportunity to carry out the above work.

References

  1. 1.
    Biswas A K, Principles of Blast Furnace Ironmaking: Theory and Practice, 1981.Google Scholar
  2. 2.
    Pandey B D and Yadav U S, Ironmak Steelmak 26 (1999) 187.CrossRefGoogle Scholar
  3. 3.
    Agrawal A, Agarwal M K, Kothari A K, and Mallick S, Ironmak Steelmak (2017).  https://doi.org/10.1080/03019233.2017.1353765.
  4. 4.
    Agrawal A, Kor S C, Nandy U, Choudhary A R, and Tripathi V R, Ironmak Steelmak 43 (2016) 550.CrossRefGoogle Scholar
  5. 5.
    Agrawal A, Vishwakarma R K, Tripathi V R, Kothari A K , Prasad B, Kumar J, Ghosh U, Tiwari M, Kundu S, Agarwal M K, and Murthy G S R, Ironmak Steelmak (2017).  https://doi.org/10.1080/03019233.2017.1400732.
  6. 6.
    Jiménez J, Mochón J, and de Ayala J S, ISIJ Int 44 (2004) 518.CrossRefGoogle Scholar
  7. 7.
    Mitra T, Mondal D N, Petterson F, and Saxen H, Comput Methods Mater Sci 13 (2013) 99.Google Scholar
  8. 8.
    Mitra T, and Saxen H, Int Fed Autom Control 48 (2015) 183.  https://doi.org/10.1016/j.ifacol.2015.10.100.Google Scholar
  9. 9.
    Gupta P K, Rao A S, Shekhar V R, Ranjan M, and Naha T K, Ironmak Steelmak 37 (2010) 235.CrossRefGoogle Scholar
  10. 10.
    Kurunov I F, Ermolaev V V, Pleshkov V I, Isteev A I, and Dobroskok V A, Mosc Inst Steel Alloys Trans Metallurg 3 (1978) 12.Google Scholar
  11. 11.
    Tarakanov A K, Bochka V V, Nemchenko S Z, Taranets A I, Neskorodev A S, Grinshtein N S, Taranovkii V V, and Marder B F, Dnepropetrovsk Metall Institute Trans Metallurg 7 (1979) 21.Google Scholar
  12. 12.
    Minaev A A, Biryuchev V I, Yaroshevksii S L, Nozdrachev V A, and Malkin V I, Metallurgist 42 (1998) 375.CrossRefGoogle Scholar
  13. 13.
    Yu Y W, Bai C G, Zhang Z R, Wang F, Lv D G, and Pan C, Ironmak Steelmak 36 (1999) 505.CrossRefGoogle Scholar
  14. 14.
    Tarakanov A K, Bochka V V, Nemchenko S Z, Grinshtein N S, Taranets A I, Dyshlevich I I, Taranovkii V V, and Marder B F, Dnepropetrovsk Metallurg Inst Trans Metallurg 9 (1985) 9.Google Scholar
  15. 15.
    Eklund N, Lindblom B, Wikstrom J O, and Bjorkman B, Steel Res Int Process Metall 80 (2009) 379.Google Scholar
  16. 16.
    Matsui Y, Kasai A, Ito K, Matsuo T, Kitayama S, and Nagai N, ISIJ Int 43 (2003) 1159.CrossRefGoogle Scholar
  17. 17.
    Matsui Y, Sato A, Oyama T, Matsuo T, Kitayama S, and Ono R, ISIJ Int 43 (2003) 166.CrossRefGoogle Scholar
  18. 18.
    Yu Y W, Bai C G, Zhang Z R, Wang F, Lv D G, and Pan C Ironmak Steelmak 36 (1999) 505.CrossRefGoogle Scholar
  19. 19.
    Nag S, and Koranne V M, Ironmak Steelmak 36 (2009) 371.CrossRefGoogle Scholar
  20. 20.
    Trans ISIJ 26 (1986) 841.Google Scholar
  21. 21.
    Trans ISIJ 24 (1984) 775.CrossRefGoogle Scholar
  22. 22.
    Fukushima T, Furukawa T, Yamada Y, et al. Trans ISIJ 22 (1982) 807.Google Scholar
  23. 23.
    Fu D, Chen Y, Rahman M T, and Zhou C Q, in AISTech 2011 Proceedings 1 (2011) 695.Google Scholar
  24. 24.
    Guha M, Rai S, Agarwal M K, and Ramna R V, in AISTech 2013 Proceedings 1 (2013) 657.Google Scholar
  25. 25.
    Guha M, Ironmak Steelmak (2017).  https://doi.org/10.1080/03019233.2017.1338385.
  26. 26.
    Martín R D, Mochón J, Verdeja L F, Barea R, Rusek P, and Jiménez J, Steel Res Int 80 (2009) 185.Google Scholar
  27. 27.
    Martín R D, Mochón J, Verdeja L F, Barea R, Rusek P, and Jiménez J, Steel Res Int 80 (2009) 194.Google Scholar
  28. 28.
    Jin H J, and Choi S, Ironmak Steelmak 37 (2009) 89.CrossRefGoogle Scholar
  29. 29.
    Ishii J, Murai R, Sumi I, Yongxiang Y, and Boom R, ISIJ Int 57 (2017) 1531.CrossRefGoogle Scholar
  30. 30.
    Pavlov A V, Onorin O P, Spirin N A, and Polinov A A, Metallurgist 60 (2016) 581.CrossRefGoogle Scholar
  31. 31.
    Sibagatullin S K, Kharchenko A S, Devyatchenko L D, and Steblyanko V L, J Chem Technol Metall 52 (2017) 694.Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  1. 1.Automation DivisionTata SteelJamshedpurIndia

Personalised recommendations