Advertisement

Effect of Severe Plastic Deformation on Microstructure and Mechanical Behaviour of Friction-Welded Structural Steel IS2062

  • M. NagarajEmail author
  • B. Ravisankar
Technical Paper
  • 62 Downloads

Abstract

The friction-welded structural steel was subjected to severe plastic deformation by equal-channel angular pressing (ECAP) at ambient condition. Mechanical properties have been experimentally determined and correlated with the microstructure. The friction-welded sample strength got improved up to 70% by ECAP process. In ECAP-processed sample, microhardness survey showed almost similar trend of hardness in all the area of the sample. From the microstructural and TEM analysis, it was understood that the grain refinement and dislocation density have contributed to the strengthening. The generated dislocation density by ECAP process was high in base material than the welded zone and the observation was attested by TEM analysis.

Keywords

Structural steel Friction welding Equal-channel angular pressing SEM Fractography TEM analysis 

Notes

Acknowledgments

The authors are thankful to the Director, National Institute of Technology, Tiruchirappalli (NITT), for providing the Sophisticated Instrumentation Facility (SIF) for carrying out this research investigation.

References

  1. 1.
    Shin D H, Seo C W, Kim J, Park K-T, and Choo W Y, Scr. Mater. 42 (2000) 695  https://doi.org/10.1016/s1359-6462(99)00422-4.CrossRefGoogle Scholar
  2. 2.
    Ivanov a M, and Lukin E S, Mater. Sci. Eng. A. 503 (2009) 45.  https://doi.org/10.1016/j.msea.2008.02.054.CrossRefGoogle Scholar
  3. 3.
  4. 4.
  5. 5.
    Udayakumar T, Raja K, Tanksale Abhijit A, and Sathiya P, J. Manuf. Process. 15 (2013) 558.  https://doi.org/10.1016/j.jmapro.2013.06.010.CrossRefGoogle Scholar
  6. 6.
    Chen X, Xie F Q, Ma T J, Li W Y, and Wu X Q, Mater. Des. 94 (2016) 45.  https://doi.org/10.1016/j.matdes.2016.01.017.CrossRefGoogle Scholar
  7. 7.
    Valiev R Z, and Langdon T G, Prog. Mater. Sci. 51 (2006) 881.  https://doi.org/10.1016/j.pmatsci.2006.02.003.CrossRefGoogle Scholar
  8. 8.
    Jozef Z, Sergey D V, George R, Martin F, and Libor K, Rev. Mater. 15 (2010) 258.  https://doi.org/10.1590/s1517-70762010000200022.Google Scholar
  9. 9.
    Valiev R Z, Ivanisenko Y V, Rauch E F, and Baudelet B, Acta Mater. 44 (1996) 4705.  https://doi.org/10.1016/s1359-6454(96)00156-5.CrossRefGoogle Scholar
  10. 10.
    Shin D H, and Park K-T, Mater. Sci. Eng. A. 410–411 (2005) 299.  https://doi.org/10.1016/j.msea.2005.08.025.CrossRefGoogle Scholar
  11. 11.
    Iwahashi Y, Horita Z, Nemoto M, and Langdon T G, Acta Mater. 46 (1998) 3317.  https://doi.org/10.1016/s1359-6454(97)00494-1.CrossRefGoogle Scholar
  12. 12.
    Kim H-K, Choi M-I, Chung C-S, and Shin D H, Mater. Sci. Eng. A. 340 (2003) 243.  https://doi.org/10.1016/s0921-5093(02)00178-8.CrossRefGoogle Scholar
  13. 13.
    Shin D H, Kim I, Kim J, and Park K, Acta Mater. 49 (2001) 1285. CrossRefGoogle Scholar
  14. 14.
    Fukuda Y, Oh-Ishi K, Horita Z, and Langdon T G, Acta Mater. 50 (2002) 1359.  https://doi.org/10.1016/s1359-6454(01)00441-4.CrossRefGoogle Scholar
  15. 15.
    Hazra S S, Pereloma E V, and Gazder A A, Acta Mater. 59 (2011) 4015.  https://doi.org/10.1016/j.actamat.2011.03.026. CrossRefGoogle Scholar
  16. 16.
    Zha M, Li Y, Mathiesen R H, Bjørge R, and Roven H J, Acta Mater. 84 (2015) 42.  https://doi.org/10.1016/j.actamat.2014.10.025.CrossRefGoogle Scholar
  17. 17.
    Hadzima B, Janeček M, Estrin Y, and Kim H S, Mater. Sci. Eng. A. 462 (2007) 243.  https://doi.org/10.1016/j.msea.2005.11.081.CrossRefGoogle Scholar
  18. 18.
    M Nagaraj, and Ravisankar B, Mater. Sci. Eng. A. (2018).  https://doi.org/10.1016/j.msea.2018.09.095.
  19. 19.
    Mishra A, Richard V, Grégori F, Asaro R J, and Meyers M A, Mater. Sci. Eng. A. 410–411 (2005) 290.  https://doi.org/10.1016/j.msea.2005.08.201.CrossRefGoogle Scholar
  20. 20.
    Liu F C, and Nelson T W, Mater. Charact. 140 (2018) 39.  https://doi.org/10.1016/j.matchar.2018.03.035.CrossRefGoogle Scholar
  21. 21.
    Liu F C, and Nelson T W, Mater. Sci. Eng. A. 710 (2018) 280.  https://doi.org/10.1016/j.msea.2017.10.092.CrossRefGoogle Scholar
  22. 22.
    Tsuji N, Ito Y, Saito Y, and Minamino Y, Scr. Mater. 47 (2002) 893.  https://doi.org/10.1016/s1359-6462(02)00282-8.CrossRefGoogle Scholar
  23. 23.
    Nagaraj M, and Ravisankar B, Trans. Indian Inst. Met. (2018).  https://doi.org/10.1007/s12666-018-1363-3.
  24. 24.
    Hwang B, Lee S, Kim Y C, Kim N J, and Shin D H, Mater. Sci. Eng. A. 441 (2006) 308.  https://doi.org/10.1016/j.msea.2006.08.045.CrossRefGoogle Scholar
  25. 25.
    Shin D H, Kim B C, Kim Y-S, and Park K-T, Acta Mater. 48 (2000) 2247.  https://doi.org/10.1016/s1359-6454(00)00028-8.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringNational Institute of TechnologyTiruchirappalliIndia

Personalised recommendations