Effect of Severe Plastic Deformation on Microstructure and Mechanical Behaviour of Friction-Welded Structural Steel IS2062

  • M. NagarajEmail author
  • B. Ravisankar
Technical Paper


The friction-welded structural steel was subjected to severe plastic deformation by equal-channel angular pressing (ECAP) at ambient condition. Mechanical properties have been experimentally determined and correlated with the microstructure. The friction-welded sample strength got improved up to 70% by ECAP process. In ECAP-processed sample, microhardness survey showed almost similar trend of hardness in all the area of the sample. From the microstructural and TEM analysis, it was understood that the grain refinement and dislocation density have contributed to the strengthening. The generated dislocation density by ECAP process was high in base material than the welded zone and the observation was attested by TEM analysis.


Structural steel Friction welding Equal-channel angular pressing SEM Fractography TEM analysis 



The authors are thankful to the Director, National Institute of Technology, Tiruchirappalli (NITT), for providing the Sophisticated Instrumentation Facility (SIF) for carrying out this research investigation.


  1. 1.
    Shin D H, Seo C W, Kim J, Park K-T, and Choo W Y, Scr. Mater. 42 (2000) 695 Scholar
  2. 2.
    Ivanov a M, and Lukin E S, Mater. Sci. Eng. A. 503 (2009) 45. Scholar
  3. 3.
  4. 4.
  5. 5.
    Udayakumar T, Raja K, Tanksale Abhijit A, and Sathiya P, J. Manuf. Process. 15 (2013) 558. Scholar
  6. 6.
    Chen X, Xie F Q, Ma T J, Li W Y, and Wu X Q, Mater. Des. 94 (2016) 45. Scholar
  7. 7.
    Valiev R Z, and Langdon T G, Prog. Mater. Sci. 51 (2006) 881. Scholar
  8. 8.
    Jozef Z, Sergey D V, George R, Martin F, and Libor K, Rev. Mater. 15 (2010) 258. Scholar
  9. 9.
    Valiev R Z, Ivanisenko Y V, Rauch E F, and Baudelet B, Acta Mater. 44 (1996) 4705. Scholar
  10. 10.
    Shin D H, and Park K-T, Mater. Sci. Eng. A. 410–411 (2005) 299. Scholar
  11. 11.
    Iwahashi Y, Horita Z, Nemoto M, and Langdon T G, Acta Mater. 46 (1998) 3317. Scholar
  12. 12.
    Kim H-K, Choi M-I, Chung C-S, and Shin D H, Mater. Sci. Eng. A. 340 (2003) 243. Scholar
  13. 13.
    Shin D H, Kim I, Kim J, and Park K, Acta Mater. 49 (2001) 1285. CrossRefGoogle Scholar
  14. 14.
    Fukuda Y, Oh-Ishi K, Horita Z, and Langdon T G, Acta Mater. 50 (2002) 1359. Scholar
  15. 15.
    Hazra S S, Pereloma E V, and Gazder A A, Acta Mater. 59 (2011) 4015. CrossRefGoogle Scholar
  16. 16.
    Zha M, Li Y, Mathiesen R H, Bjørge R, and Roven H J, Acta Mater. 84 (2015) 42. Scholar
  17. 17.
    Hadzima B, Janeček M, Estrin Y, and Kim H S, Mater. Sci. Eng. A. 462 (2007) 243. Scholar
  18. 18.
    M Nagaraj, and Ravisankar B, Mater. Sci. Eng. A. (2018).
  19. 19.
    Mishra A, Richard V, Grégori F, Asaro R J, and Meyers M A, Mater. Sci. Eng. A. 410–411 (2005) 290. Scholar
  20. 20.
    Liu F C, and Nelson T W, Mater. Charact. 140 (2018) 39. Scholar
  21. 21.
    Liu F C, and Nelson T W, Mater. Sci. Eng. A. 710 (2018) 280. Scholar
  22. 22.
    Tsuji N, Ito Y, Saito Y, and Minamino Y, Scr. Mater. 47 (2002) 893. Scholar
  23. 23.
    Nagaraj M, and Ravisankar B, Trans. Indian Inst. Met. (2018).
  24. 24.
    Hwang B, Lee S, Kim Y C, Kim N J, and Shin D H, Mater. Sci. Eng. A. 441 (2006) 308. Scholar
  25. 25.
    Shin D H, Kim B C, Kim Y-S, and Park K-T, Acta Mater. 48 (2000) 2247. Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringNational Institute of TechnologyTiruchirappalliIndia

Personalised recommendations