Evaluation of Mechanical Properties and Microstructures of Ultrafine Grain Low-Carbon Steel Processed by Cryorolling and Annealing

  • Qing Yuan
  • Guang XuEmail author
  • Man Liu
  • Sheng Liu
  • Hai-jiang Hu
Technical Paper


In the present study, low-carbon steel was first evenly cryorolled by 50% reduction at liquid nitrogen temperature (LNT) and then annealed at 400–550 °C for 1800 s. A transmission electron microscope was employed to analyze the microstructures and the tangled dislocations in the processed steel. The presence of Fe3C particles in the steel was confirmed by X-ray diffraction method, and the mechanical properties were measured by an electronic universal tensile machine. It was found that cryorolling at LNT significantly improved the potentials of refined ferrite grains. Grain refinement at LNT occurred due to the suppression of dynamic recovery during cryorolling, thus resulting in high defect density and abundant nucleation sites for ferrite grains. An average ferrite grain size of 133 nm was observed in the specimen annealed at 450 °C for 1800 s, and its strength increased to 970.2 MPa with a reasonable ductility of 12.34%. The work extended the cryorolling from alloys and austenitic stainless steels to the low-carbon steels and provided a technical support for the fabrication of ultrafine grained low-carbon steel.


Ultrafine grain Cryorolling Annealing Martensite Mechanical property 



The authors gratefully acknowledge the financial supports from The Major Projects of Technology Innovation of Hubei Province (2017AAA116), the National Natural Science Foundation of China (NSFC) (Nos. 51874216 and 51704217), and Hebei Joint Research Fund for Iron and Steel (E2018318013).


  1. 1.
    Lu K, Science 345 (2014)1455.CrossRefGoogle Scholar
  2. 2.
    Wang B F, Sun J Y, Zou J D, Vincent S, and Li J, J Cent South Univ 22 (2015) 3698.CrossRefGoogle Scholar
  3. 3.
    Matsybara K, Miyahara Y, Horita Z, and Langdon T G, Acta Mater 51 (2003) 3073.CrossRefGoogle Scholar
  4. 4.
    Shin D H, Kim B C, Park K, and Kim Y S, Acta Mater 48 (2000) 2247.CrossRefGoogle Scholar
  5. 5.
    Tsuji N, Shiotsuki K, and Saito Y, Mater Trans JIM 40 (1999) 765.CrossRefGoogle Scholar
  6. 6.
    Tsuji N, Ueji R, and Saito Y, Mater Jpn 39 (2000) 961. (in Japanese)CrossRefGoogle Scholar
  7. 7.
    Saito Y, Utsunomiya H, Tsuji N, and Sakai T, Acta Mater 47 (1999) 579.CrossRefGoogle Scholar
  8. 8.
    Belyakov A, Sakika Y, Hara T, Kimura Y, and Tsuzaki K, Metall Mater Trans A 34 (2003) 131.CrossRefGoogle Scholar
  9. 9.
    Takaki S, Kawasaki K, and Kimura Y, in Ultrafine grained materials, (eds) Mishra R S, The Minerals, Metals & Materials Society (TMS), Warrendale (2000).Google Scholar
  10. 10.
    Valiev R Z, Ivanisenko Y, Rauch E F, and Baudelet B, J Mater Sci 47 (2012) 7789.CrossRefGoogle Scholar
  11. 11.
    Horita Z, Smith D, Furukwa M, Nnemoto M, Valiev R Z, and Langdon T G, J Mater Res 11 (1996) 1880.CrossRefGoogle Scholar
  12. 12.
    Tsuji N, Ueji R, Minamino Y, and Saito Y, Scripta Mater 46 (2002) 305.CrossRefGoogle Scholar
  13. 13.
    Bao Y Z, Adachi Y, Toomine Y, Xu P G, Suzuki T, and Tomota Y, Scripta Mater 53 (2005) 1471.CrossRefGoogle Scholar
  14. 14.
    Ueji R, Tsuji N, Minamino Y, and Koizumi Y, Acta Mater 50 (2002) 4177.CrossRefGoogle Scholar
  15. 15.
    Ashrafi H, and Najafizadeh A, Trans Indian Inst Met 8 (2016) 1467.CrossRefGoogle Scholar
  16. 16.
    Shanmugasundaram T, Murty B S, and Sarma V S, Scripta Mater 54 (2006) 2013.CrossRefGoogle Scholar
  17. 17.
    Panigrahi S K, and Jayaganthan R, Metall Mater Trans A 41A (2010) 2675.CrossRefGoogle Scholar
  18. 18.
    Rao P N, Singh D, and Jayaganthan R, Mater Design 56 (2014) 97.CrossRefGoogle Scholar
  19. 19.
    Yu H L, Tieu A K, Lu C, Liu X H, Godbole A, and Kong C, Mater Sci Eng A 568 (2013) 212.CrossRefGoogle Scholar
  20. 20.
    Fritsch S, Hunger S, Scholze M, Hockauf M, and Wagner M F X, Mater Sci Eng Tech 42 (2011) 573.Google Scholar
  21. 21.
    Weiss M, Taylor A S, Hodgson P D, and Stanford N, Acta Mater 61 (2013) 5278.CrossRefGoogle Scholar
  22. 22.
    Yuan Q, Xu G, Tian J Y, and Liang W C, Arab J Sci Eng 42 (2017) 4771.CrossRefGoogle Scholar
  23. 23.
    Okitsu Y, Takatab N, and Tsuji N, Scripta Mater 60 (2009) 76.CrossRefGoogle Scholar
  24. 24.
    Tian J Y, Xu G, Liang W C, and Yuan Q, Metallogr Microstruct Anal 6 (2017) 233.CrossRefGoogle Scholar
  25. 25.
    Tsuji N, and Maki T, Scripta Mater 60 (2009) 1044.CrossRefGoogle Scholar
  26. 26.
    Hosseini S M, Alishahi M, Najafizadeh A, and Kermanpur A, Mater Lett 74 (2012) 206.CrossRefGoogle Scholar
  27. 27.
    Wang T S, Zhang F C, Zhang, M and Lv B, Metall Mater Trans A 485 (2008) 456.Google Scholar
  28. 28.
    Ueji R, Tsuji N, Minamino Y, and Koizumi Y, Sci Technol Adv Mat 5 (2004) 153.CrossRefGoogle Scholar
  29. 29.
    Li X, Jing T F, Lu M M, and Zhang J W, J Mater Eng Perform 21 (2012) 1496.CrossRefGoogle Scholar
  30. 30.
    Alizamini H A, Militzer M, and Poole W J, Scripta Mater 57 (2007) 1065.CrossRefGoogle Scholar
  31. 31.
    Hamzeh M, Kermanpur A, and Najafizadeh A, Mater Sci Eng A 593 (2014) 24.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  1. 1.The State Key Laboratory of Refractories and Metallurgy, Hubei Collaborative Innovation Center for Advanced SteelsWuhan University of Science and TechnologyWuhanChina

Personalised recommendations