Synthesis of α-WO3 Thin Film Using Pulsed Laser Deposition: Influence of Thickness on Optical and Electrical Properties

  • Baban P. DhongeEmail author
  • Akash Singh
  • Arun Kumar Panda
  • R. Thirumurugesan
  • P. Parameswaran
Technical Paper


The present study reports the systematic study on the effect of film thickness on the optical and electrical properties of transparent tetragonal (α) WO3 phase, synthesized using pulsed laser deposition. The WO3 films of various thicknesses 250 ± 4 (S1), 350 ± 2 (S2), 750 ± 5 (S3) and 1150 ± 4 (S4) nm were obtained by varying the deposition time 8, 15, 30 and 60 min, respectively. The films were post-annealed at 500 °C for 1 h in the open atmosphere and extensively characterized using X-ray diffraction (XRD), atomic force microscopy (AFM), Raman spectroscopy, UV–Vis–NIR spectrophotometer and four-probe resistivity. The Rietveld analysis of XRD pattern revealed the presence of mixed orthorhombic and tetragonal crystalline phases in the S1 (250 ± 4 nm) film. A pure tetragonal crystalline phase of WO3 was observed in rest of the films. The Raman spectroscopic study also revealed the high-temperature WO3 phase formation. The grain size and surface roughness obtained from the AFM micrographs varied from 10 to 50 nm and 9.1 to 10.9 nm, respectively. The optical band gaps were found to decrease as 3.47, 3.28, 3.08 and 3.06 eV with the increase in the film thickness S1, S2, S3 and S4, respectively. The resistivity of the films was found to increase with an increase in film thickness. However, the decrease in the resistivity with an increase in the temperature revealed the semiconducting behavior of all the films. The activation energy was found to increase with the increase in the thickness of α-WO3 film.


Tetragonal WO3 Thin film Rietveld analysis Optical band gap Activation energy 



The authors thank Dr. S. Raju, Head PMD/MCG/IGCAR, and Dr. Saroja Saibaba, Associate Director MCG/IGCAR, for their constant encouragement and motivation during the project. Experimental support rendered by Ms. M. Jyothi and Dr. Niranjan Kumar (SND/MSG/IGCAR) is acknowledged.


  1. 1.
    Castro-Hurtado I, Tavera T, Yurrita P, Pérez N, Rodriguez A, Mandayo G G, Castaño E, Appl Surf Sci 276 (2013) 229.CrossRefGoogle Scholar
  2. 2.
    Sivakumar R, Gopalakrishnan R, Jayachandran M, Sanjeeviraja C, Opt Mater 29 (2007) 679.CrossRefGoogle Scholar
  3. 3.
    Malin B J, Gustavo B, Iryna V, Clas P, Hans A, Gunnar A N, Lars Ö, J Phys Condens Matter 25 (2013) 205502.CrossRefGoogle Scholar
  4. 4.
    Zou Y S, Zhang Y C, Lou D, Wang H P, Gu L, Dong Y H, Dou K, Song X F, Zeng H B, J Alloys Compd 583 (2014) 465.CrossRefGoogle Scholar
  5. 5.
    Niklasson G A, Granqvist C G, J Mater Chem 17 (2007) 127.CrossRefGoogle Scholar
  6. 6.
    Yang C, Chen J-F, Zeng X, Cheng D, Cao D, Ind Eng Chem Res 53 (2014)17981.CrossRefGoogle Scholar
  7. 7.
    Tahir M B, Nabi G, Rafique M, Khalid N R, Int J Environ Sci Technol 14 (2017) 2519.CrossRefGoogle Scholar
  8. 8.
    Su P-G, Peng Y-T, Sens Actuators B 193 (2014) 637.CrossRefGoogle Scholar
  9. 9.
    Woodward P M, Sleight A W, Vogt T, J Solid State Chem 131 (1997) 9.CrossRefGoogle Scholar
  10. 10.
    Righettoni M, Pratsinis S E, Mater Res Bull 59 (2014) 199.CrossRefGoogle Scholar
  11. 11.
    Boulova M, Lucazeau G, J Solid State Chem 167 (2002) 425.CrossRefGoogle Scholar
  12. 12.
    Ponzoni A, Comini E, Ferroni M, Sberveglieri G, Thin Solid Films 490 (2005) 81.CrossRefGoogle Scholar
  13. 13.
    Panda A K, Singh A, Thirumurugesan R, Kuppusami P, Mohandas E, J Instrum 10 (2015) 09014.CrossRefGoogle Scholar
  14. 14.
    Badilescu S, Ashrit P V, Solid State Ion 158 (2003) 187.CrossRefGoogle Scholar
  15. 15.
    Sobia A, Christopher S B, Simon C N, Ivan P P, Meas Sci Technol 19 (2008) 025203.CrossRefGoogle Scholar
  16. 16.
    Guojia F, Zuli L, Yao K L, J Phys D 34 (2001)2260.CrossRefGoogle Scholar
  17. 17.
    Yamamoto S, Inouye A, Yoshikawa M, Nucl Instrum Methods Phys Res B 266 (2008) 802.CrossRefGoogle Scholar
  18. 18.
    Stankova N E, Atanasov P A, Stanimirova T J, Dikovska A O, Eason R W, Appl Surf Sci 247 (2005) 401.CrossRefGoogle Scholar
  19. 19.
    Ramana C V, Utsunomiya S, Ewing R C, Julien C M, Becker U, J Phys Chem B 110 (2006) 10430.CrossRefGoogle Scholar
  20. 20.
    Fumiaki M, Eiichi H, Tomoaki I, Kenji E, Raj Kumar T, Jpn J Appl Phys 41 (2002) 5372.CrossRefGoogle Scholar
  21. 21.
    Mitsugi F, Hiraiwa E, Ikegami T, Ebihara K, Surf. Coat. Technol. 169–170 (2003) 553.CrossRefGoogle Scholar
  22. 22.
    Zhao Y, Feng Z-C, Liang Y, Sens. Actuators, B 66 (2000) 171.CrossRefGoogle Scholar
  23. 23.
    Smits F M. Bell Labs Tech J 37 (1958) 711.CrossRefGoogle Scholar
  24. 24.
    Rietveld H, Acta Crystallogr 22 (1967) 151.CrossRefGoogle Scholar
  25. 25.
    Rietveld H, J Appl Crystallogr 2 (1969) 65.CrossRefGoogle Scholar
  26. 26.
    Lutterotti L, Scardi P, J Appl Cryst 23 (1990) 246.CrossRefGoogle Scholar
  27. 27.
    Kubo T, Nishikitani Y, J Electrochem Soc 145 (1998)1729.CrossRefGoogle Scholar
  28. 28.
    Shigesato Y, Murayama A, Kamimori T, Matsuhiro K, Appl Surf Sci 33–34 (1988) 804.CrossRefGoogle Scholar
  29. 29.
    Wu W, Yu Q, Lian J, Bao J, Liu Z, Pei S-S, J Cryst Growth 312 (2010) 3147.CrossRefGoogle Scholar
  30. 30.
    Weckhuysen B M, Schoonheydt R A, Catal Today 49 (1999) 441.CrossRefGoogle Scholar
  31. 31.
    Dhonge B P, Mathews T, Sundari S T, Thinaharan C, Kamruddin M, Dash S, Tyagi A K, Appl Surf Sci 258 (2011) 1091.CrossRefGoogle Scholar
  32. 32.
    Ekimov A I, Efros A L, Onushchenko A A, Solid State Commun 56 (1985) 921.CrossRefGoogle Scholar
  33. 33.
    Aguir K, Lemire C, Lollman D B B, Sens Actuators B 84 (2002) 1.CrossRefGoogle Scholar
  34. 34.
    Kaneko H, Miyake K, Teramoto Y, J Appl Phys 53 (1982) 3070.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.XRDSES, Physical Metallurgy Division, Metallurgy and Materials GroupIndira Gandhi Centre for Atomic ResearchKalpakkamIndia

Personalised recommendations