Sliding Wear Studies on Heat-Treated Functionally Graded Cu–Ni–Si/TiC Composite

  • R. Jojith
  • N. Radhika
  • U. Vipin
Technical Paper


Centrifugally cast functionally graded Cu–11Ni–4Si/10 wt% TiC composite of dimension Øout100 × Øin70 × 100 mm was heat treated to enhance the mechanical and tribological characteristics. Samples from inner zone (9–15 mm) were initially solution treated (850 °C/1 h), water quenched, and aged at varying temperatures (450, 500, and 550 °C) and ageing time (4, 6 and 8 h). The highest hardness (192 HV) displayed by the specimen aged at 550 °C/6 h was chosen for dry sliding tribological studies performed at varying applied loads (10–30 N), sliding velocities (1–3 m/s) and sliding distances (500–1500 m). An improvement of 65% was observed on comparing the micro-hardness values of heat-treated and non-heat-treated composites, while a decrease of 54.8% was observed on comparing the wear rate of heat-treated alloy and composite at optimum parameters. The wear rate increased with applied load, decreased initially and then increased with sliding distance and sliding velocity. Analysis of variance predicted applied load as the major influential parameter, followed by sliding distance and sliding velocity. Worn surface analysis revealed increase in delamination along with mild to severe wear transition with increase in applied load, and the formation of a mechanically mixed layer with increase in sliding velocity. This composite having high wear rate and hardness could be utilized for automotive load bearings, cylinder liners and brake drum applications.


Functionally graded materials Heat treatment Copper Adhesive wear Taguchi ANOVA 


  1. 1.
    Davis J R, ASM Specialty Handbook: Copper and Copper Alloys, ASM International, Materials Park (2001).Google Scholar
  2. 2.
    Zhuang J, Liu Y B, Cao Z Y, and Li Y Y, Mater Trans 51 (2010) 2311.CrossRefGoogle Scholar
  3. 3.
    Shabani M, Paydar M H, Zamiri R, Goodarzi M, and Moshksar M M, J Mater Res Technol 5 (2016) 5.CrossRefGoogle Scholar
  4. 4.
    Hong E, Kaplin B, You T, Suh M S, Kim Y S, and Choe H, Wear 270 (2011) 591.CrossRefGoogle Scholar
  5. 5.
    Radhika N, and Subramanian R, Int J Mater Res 105 (2014) 875.CrossRefGoogle Scholar
  6. 6.
    Mares M, J Optoelectron Adv Mater 3 (2001) 119.Google Scholar
  7. 7.
    Vieira A C, Sequeira P D, Gomes J R, and Rocha L A, Wear 267 (2009) 585.Google Scholar
  8. 8.
    Karun A S, Rajan T P D, Pillai U T S, Pai B C, Rajeev V R, and Farook A, J Compos Mater 50 (2016) 2255.CrossRefGoogle Scholar
  9. 9.
    Sathiskumar R, Murugan N, Dinaharan I, and Vijay S J, Mater Charact 84, (2013) 16.CrossRefGoogle Scholar
  10. 10.
    Mohapatra S, Mishra D K, and Singh S K, Powder Technol 237, (2013) 41.CrossRefGoogle Scholar
  11. 11.
    Kennedy A R, Karantzalis A E, and Wyatt S M, J Mater Sci 34, (1999) 933.CrossRefGoogle Scholar
  12. 12.
    Sabbaghian M, Shamanian M, Akramifard H R, and Esmailzadeh M, Ceram Int 40 (2014) 12969.CrossRefGoogle Scholar
  13. 13.
    Bourithis L, Milonas A, and Papadimitriou G D, Surf Coat Technol 165, (2003) 286.CrossRefGoogle Scholar
  14. 14.
    Sawla S, and Das S, Wear 257, (2004) 555.CrossRefGoogle Scholar
  15. 15.
    Hegde R, Sivaram N M, Ajaykumar B S, and Kirthan L J, Int J Appl Eng Res 12 (2017) 605.Google Scholar
  16. 16.
    Sam M, and Radhika N, J Tribol 140 (2018) 021606.CrossRefGoogle Scholar
  17. 17.
    Nithesh R, Radhika N, and Sunder S S, J Tribol 139 (2017) 061603.CrossRefGoogle Scholar
  18. 18.
    Karantzalis A E, Lekatou A, Georgatis E, Poulas V, and Mavros H, J Mater Eng Perform 19 (2010) 585.CrossRefGoogle Scholar
  19. 19.
    Azzeddine H, Mehdi B, Hennet L, Thiaudière D, Alili B, Kawasaki M, Bradai D, and Langdon T G, Mater Sci Eng A 597 (2014)288.CrossRefGoogle Scholar
  20. 20.
    Dwivedi D K, Mater Des 31 (2010) 2517.CrossRefGoogle Scholar
  21. 21.
    Baradeswaran A, and Elaya Perumal A, Compos Part B Eng 54 (2013) 146.CrossRefGoogle Scholar
  22. 22.
    Radhika N, and Subramanian R, Tribol Mater Surf Interfaces 7 (2013) 36.CrossRefGoogle Scholar
  23. 23.
    Jo S K, Lee W J, Park Y H, and Park I M, Tribol Lett 45 (2012) 101.CrossRefGoogle Scholar
  24. 24.
    Basavarajappa S, and Chandramohan G, Mater Sci 11 (2005) 253.Google Scholar
  25. 25.
    Zhang L, He X B, Qu X H, Duan B H, Lu X, and Qin M L, Wear 265 (2008) 1848.CrossRefGoogle Scholar
  26. 26.
    Kaur K, Anant R, and Pandey O P, Tribol Lett 44 (2011) 41.CrossRefGoogle Scholar
  27. 27.
    Mu Z, Geng H R, Li M M, Nie G L, and Leng J F, Compos Part B Eng 52 (2013) 51.CrossRefGoogle Scholar
  28. 28.
    Jojith R, and Radhika N, Part Sci Technol 40 (2018) 292.Google Scholar
  29. 29.
    Sangaravadivel P, Natarajan N, and Krishnaraj V, Appl Mech Mater 852 (2016) 435.CrossRefGoogle Scholar
  30. 30.
    Zhang G, and Schlarb A K, Wear 266 (2009) 745.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Amrita School of EngineeringAmrita Vishwa VidyapeethamCoimbatoreIndia

Personalised recommendations