Advertisement

Effects of Mechanical Milling Time and Boron Carbide Reinforcement Content on Powder and Hot Extruded Al–2wt.%Cu–B4C Nanocomposites: Microstructural, Mechanical and Fracture Characterization

  • Ali AlizadehEmail author
  • Mohammad Hossein Babaee
Technical Paper

Abstract

The main objective of this study is an investigation on influences of mechanical milling time and B4C reinforcement content on microstructure and mechanical properties of powder and hot extruded B4C reinforced Al–2wt.%Cu aluminum alloy matrix nanocomposites. These composites were fabricated through mechanical milling, cold isostatic pressing and hot extrusion processes. Results of powder characterization showed that steady-state time of mechanical milling was predicted to be around 20 h. Microstructural analyses of Al–Cu–4wt.%B4C composite powder revealed that strain-induced dissolution of fine B4C reinforcements and in situ formation of Al3BC phases within the nanocrystalline aluminum matrix were detected only when the composite powder was subjected to at least mechanical milling time of 20 h and subsequent heat treatment. Strength and hardness of the nanostructured samples were significantly improved by increasing mechanical milling time and B4C reinforcement weight percent due to higher level of severe plastic deformation applied to the powders during the fabrication process.

Keywords

Mechanical milling time B4C reinforcement content Nanocomposite Al3BC phase Steady-state time 

References

  1. 1.
    Khademian M, Alizadeh A, and Abdollahi A, Trans Indian Inst Met 70 (2016) 1635.CrossRefGoogle Scholar
  2. 2.
    Chi Y, Gu G, Yu H, and Chen C, Opt Lasers Eng 100 (2018) 23.CrossRefGoogle Scholar
  3. 3.
    Sahin Y, and Kilicli V, Wear 271 (2011) 2766.CrossRefGoogle Scholar
  4. 4.
    Kok M, and Ozdin K, J Mater Process Technol 183 (2007) 301.CrossRefGoogle Scholar
  5. 5.
    Tazari H, and Siadati M H, J Alloys Compd 729 (2017) 960.CrossRefGoogle Scholar
  6. 6.
    Abdollahi A, Alizadeh A, and Baharvandi H R, Mater Des 55 (2014) 471.CrossRefGoogle Scholar
  7. 7.
    Alizadeh A, Eslami M, and Babaee M H, Trans Indian Inst Met 71 (2018) 2325.CrossRefGoogle Scholar
  8. 8.
    Sharma V K, Singh R C, and Chaudhary R, Eng Sci Technol Int J 20 (2017) 1318.CrossRefGoogle Scholar
  9. 9.
    Luo Z, Song Y, Zhang S, and Miller D J, Metall Mater Trans A 43 (2012) 281.CrossRefGoogle Scholar
  10. 10.
    Viala J C, Bouix J, Gonzalez G, and Esnouf C, J Mater Sci 32 (1997) 4559.CrossRefGoogle Scholar
  11. 11.
    Zhang Z, Chen X G, and Charette A, J Mater Sci 42 (2007) 7354.CrossRefGoogle Scholar
  12. 12.
    Han B Q, and Lavernia E J, Adv Eng Mater 7 (2005) 457.CrossRefGoogle Scholar
  13. 13.
    Ahn B, Deformation behavior and microstructural evolution of nanocrystalline aluminum alloys and composites, MSc Thesis, University of Southern California, United States of America (2008).Google Scholar
  14. 14.
    Chawala N, and Chawala K K, Metal Matrix Composites, Springer, Berlin (2006).Google Scholar
  15. 15.
    Chawala K K, Composite Materials, Springer, New York (2012).CrossRefGoogle Scholar
  16. 16.
    Kandpal B C, Kumar J, and Singh H, Mater Today 4 (2017) 2783.CrossRefGoogle Scholar
  17. 17.
    Ray S, J Mater Sci 28 (1993) 5397.CrossRefGoogle Scholar
  18. 18.
    Dhanashekar M, and Senthil Kumar V S, Procedia Eng 97 (2014) 412.CrossRefGoogle Scholar
  19. 19.
    Senemar M, Niroumand B, Maleki A, and Rohatgi P K, J Compos Mater 52 (2017) 123.CrossRefGoogle Scholar
  20. 20.
    Singh M, Rana R S, Purohit R, and Sahu K, Mater Today 2 (2015) 3697.CrossRefGoogle Scholar
  21. 21.
    Torralba J M, Da Cost C E, and Velasco F, J Mater Process Technol 133 (2003) 203.CrossRefGoogle Scholar
  22. 22.
    Prasad V V B, Bhat B V R, Mahajan Y R, and Ramakrishnan P, Mater Sci Eng A 337 (2002) 179.CrossRefGoogle Scholar
  23. 23.
    Benjamin J S, Metall Trans 1 (1970) 2943.Google Scholar
  24. 24.
    Dagasan E, Gercekcioglu E, and Unalan S, J Powder Metall Min 6 (2017) 1.Google Scholar
  25. 25.
    Suryanarayana C, Ivanov E, and Boldyrev V V, Mater Sci Eng A 304 (2001) 151.CrossRefGoogle Scholar
  26. 26.
    Witkin D, Han B Q, and Lavernia E J, Metall Mater Trans A 37 (2006) 185.CrossRefGoogle Scholar
  27. 27.
    Dhal A, Panigrahi S K, and Shunmugam M S, J Alloys Compd 726 (2017) 1205.CrossRefGoogle Scholar
  28. 28.
    Vasil’ev L S, Lomaev I L, and Elsukov E P, Phys Met Metallogr 107 (2009) 141.CrossRefGoogle Scholar
  29. 29.
    Zemtsova N D, Sagaradze V V, and Romashov L N, Phys Met Metallogr 47 (1979) 937.Google Scholar
  30. 30.
    Ivanisenko Y, Lojkowski W, Valiev R Z, and Fecht H J, Acta Mater 51 (2003) 5555.CrossRefGoogle Scholar
  31. 31.
    Dorofeev G A, Eslukov E P, and Zagainov A V, Phys Met Metallogr 98 (2004) 60.Google Scholar
  32. 32.
    Vasil’ev L S, Lomaev I L, and Elsukov E P, Phys Met Metallogr 102 (2006) 186.CrossRefGoogle Scholar
  33. 33.
    Kubota M, and Cizek P, J Alloys Compd 457 (2008) 209.CrossRefGoogle Scholar
  34. 34.
    Alizadeh A, Abdollahi A, and Radfar M J, Trans Nonferrous Met Soc China 27 (2017) 1233.CrossRefGoogle Scholar
  35. 35.
    ASTM B384-17, Standard test method for microindentation hardness of materials, ASTM International (2017).Google Scholar
  36. 36.
    Cullity B D, and Stock S R, Elements of X-ray Diffraction, 3rd ed., Prentice-Hall, New York (2001).Google Scholar
  37. 37.
    ASTM B557-15, Standard Test Methods for Tension Testing Wrought and Cast Aluminum And Magnesium Alloy Products, ASTM International (2015).Google Scholar
  38. 38.
    ASTM E9-09, Standard Test Methods for Compression Testing of Metallic Materials at Room Temperature, ASTM International (2009).Google Scholar
  39. 39.
    Fogagnolo J B, Velasco F, Robert M H, and Torralba J M, Mater Sci Eng A 342 (2003) 131.CrossRefGoogle Scholar
  40. 40.
    Suryanarayana C, Prog Mater Sci 46 (2001) 1.CrossRefGoogle Scholar
  41. 41.
    Taheri-Nassaj E, and Alizadeh A, Adv Mater Res 383 (2012) 2733.Google Scholar
  42. 42.
    Razavi Hesabi Z, Simchi A, and Seyed Reihani S M, Mater Sci Eng A 428 (2006) 159.CrossRefGoogle Scholar
  43. 43.
    Friend C M, Mater Sci Technol 5 (1989) 1.CrossRefGoogle Scholar
  44. 44.
    Kouzeli M, and Mortensen A, Acta Mater 50 (2002) 39.CrossRefGoogle Scholar
  45. 45.
    Zhang Z, and Chen D L, Scr Mater 54 (2006) 1321.CrossRefGoogle Scholar
  46. 46.
    Alizadeh A, Taheri-Nassaj E, and Baharvandi H R, Bull Mater Sci 34 (2011) 1039.CrossRefGoogle Scholar
  47. 47.
    Abdollahi A, Alizadeh A, and Baharvandi H R, Mater Sci Eng A 608 (2014) 139.CrossRefGoogle Scholar
  48. 48.
    Fecht H J, Nanostruct Mater 6 (1995) 33.CrossRefGoogle Scholar
  49. 49.
    Kubota M, J Alloys Compd 504 (2010) 319.CrossRefGoogle Scholar
  50. 50.
    Kubota M, J Alloys Compd 434435 (2007) 294.CrossRefGoogle Scholar
  51. 51.
    Gostariani R, Asadi Asadabad M, Paydar M H, and Ebrahimi R, Adv Powder Technol 28 (2017) 2232.CrossRefGoogle Scholar
  52. 52.
    Alizadeh A, and Taheri-Nassaj E, Mater Charact 67 (2012) 119.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.Faculty of Materials and Manufacturing ProcessesMalek Ashtar University of TechnologyTehranIran
  2. 2.Department of Materials EngineeringIsfahan University of TechnologyIsfahanIran

Personalised recommendations