Advertisement

Application of 3D EBSD Technique to Study Crystallographic Texture in Heavily Cold-Rolled and Recrystallized Modified 9Cr–1Mo Steel

  • Pradyumna Kumar ParidaEmail author
  • Arup Dasgupta
  • Durga Prasad
  • R. Mythili
  • Saroja Saibaba
Technical Paper
  • 60 Downloads

Abstract

Automated electron backscatter diffraction (EBSD) technique in a dual-beam field emission gun scanning electron microscope has been successfully used to obtain three-dimensional (3D) orientation mapping of grains in modified 9Cr–1Mo after severe plastic deformation and recrystallization. In this technique, the microstructure and micro-texture across several sections of the material were studied by means of the state-of-the-art “slice and view” methodology using grazing incidence high-energy Ga+ focused ion beam for slicing and electron beam for viewing and EBSD analysis. By combining the data from each slice, a 3D texture map could be generated by means of image reconstruction technique. The orientation map thus generated provided volumetric microstructural and micro-textural information. The 3D EBSD studies on the heavily deformed mod-9Cr–1Mo steel (cold-rolled 88%) revealed that rolled grains were elongated like plates with thickness ≤ 200 nm. Analysis of the fiber texture components in rolled specimen across the sections showed near equal preference for all fiber texture components with some enhancement of the α-fiber texture. However, by recrystallizing at 1023 K for 1 h, elongated grains along rolling direction with large diameters (~ 40 to 100 µm) were observed together with finer (size ~ 0.5 to 2 µm) polygonal grains and γ-fiber texture component dominated over other texture components.

Keywords

Modified 9Cr–1Mo steel 3D EBSD Recrystallization Grain orientation spread Fiber texture 

Notes

Acknowledgements

The authors gratefully acknowledge Dr. A. K. Bhaduri, Director, Indira Gandhi Centre for Atomic Research (IGCAR), Dr. G. Amarendra, Director, Metallurgy and Materials Group (MMG), IGCAR, and Dr. S. Raju, Head, Physical Metallurgy Division, MMG, IGCAR, Kalpakkam for their support and encouragement during this project. Prof. I. Samajdar, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai is sincerely acknowledged for useful discussions and experimental support provided. The authors would also like to acknowledge the experimental support provided by UGC-DAE-CSR Node at Kalpakkam.

References

  1. 1.
    Jensen D J, and Poulsen H F, Mater Charact 72 (2012) 1.CrossRefGoogle Scholar
  2. 2.
    Zaafarani N, Raabe D, Singh R N, Roters F, and Zaefferer S, Acta Mater 54 (2006) 1863.CrossRefGoogle Scholar
  3. 3.
    Mazumder B, Purohit V, Gruber M, Vella A, Vurpillot F, and Deconihout B, Thin solid Films 589 (2015) 38.CrossRefGoogle Scholar
  4. 4.
    Ferry M, Xu W, Quadir Md. Z, Zinnia N A, Laws K, Mateescu N, Robin L, Bassman L, Cairney J, Humphreys J, Albou A, and Driver J, Mater Sci Forum 715716 (2012) 41.Google Scholar
  5. 5.
    Zaefferer S, Wright S I, and Raabe D, Metall Mater Trans A, 39A (2008) 374.CrossRefGoogle Scholar
  6. 6.
    Rowenhorst D J, Gupta A, Feng C R, and Spanos G, Scr Mater 55 (2006) 11.CrossRefGoogle Scholar
  7. 7.
    Engler O, and Randle V, Introduction to Texture Analysis Macrotexture, Microtexture and Orientation Mapping, 2nd edn, CRC Press, New York (ISBN 978-1-4200-6365-3).Google Scholar
  8. 8.
    Klueh R L, and Harries D R, High-chromium Ferritic and Martensitic Steels for Nuclear Applications, ASTM International (ISBN 0-8031-2090-7).Google Scholar
  9. 9.
    Hollner S, Fournier B, Le Pendu J, Cozzika T, Tournie I, Brachet J C, and Pineau A, J Nucl Mater 405 (2010) 101.CrossRefGoogle Scholar
  10. 10.
    Samjdar I, Verlinden B, Kestens L, and Van Houtte P, Acta Mater 47 (1999) 55.Google Scholar
  11. 11.
    Parida P K, Dasgupta A, and Saibaba S, J Nucl Mater 432 (2013) 450.CrossRefGoogle Scholar
  12. 12.
    Raabe D, and Lucke K, Scr Metal Mater 26 (1992) 1221.CrossRefGoogle Scholar
  13. 13.
    Toth L S, Molinari A, and Raabe D, Metal Mater Trans A 28 (1997) 2343.CrossRefGoogle Scholar
  14. 14.
    Fei G, Zhen-Yu L, Hai-Tao L, and Guo-Dong W, J Iron Steel Res Int 20 (2013) 31.CrossRefGoogle Scholar
  15. 15.
    Hu H, Texture 1 (1974) 233.CrossRefGoogle Scholar
  16. 16.
    Li S, Beyerlein I J, and Bourke M A M, Mater Sci Eng A 394 (2005) 66.CrossRefGoogle Scholar
  17. 17.
    Radhakrishnan B, and Sarma G B, Mater Sci Eng A 494 (2008) 73.CrossRefGoogle Scholar
  18. 18.
    Sinclair C W, Robaut F, Maniguet L, Mithieux J-D, Schmitt J-H, and Brechet Y, Adv Eng Mater 5 (2003) 570.CrossRefGoogle Scholar
  19. 19.
    Huh M-Y, Lee J-H, Park S H, Engler O, and Raabe D, Steel Res Int 76 (2005) 797.Google Scholar
  20. 20.
    Pirgazi H, Ghodrat S, and Kestens L A I, Mater Charact 90 (2014) 13.CrossRefGoogle Scholar
  21. 21.
    Lin F X, Godfrey A, Jensen D J, and Winther G, Mater Charact 61 (2010) 1203.CrossRefGoogle Scholar
  22. 22.
    Dillon S J, and Rohrer G S, J Am Ceram Soc 92 (2009) 1580.CrossRefGoogle Scholar
  23. 23.
    Xu W, Ferry M, Mateescu N, Cairney J M, and Humphreys F J, Mater Charact 58 (2007) 961.CrossRefGoogle Scholar
  24. 24.
    Ferry M, Quadir Md. Z, Zinnia N A, Bassman L, George C, McMahon C, Xu W, and Laws K, Mater Sci Forum 702703 (2012) 469.Google Scholar
  25. 25.
    Van Houtte P, and Buyser L D, Acta Metall Mater 41 (1993) 323.CrossRefGoogle Scholar
  26. 26.
    Van Houtte P, The ‘‘MTM-FHM’’ and ‘‘MTM-TAY’’ Software System—Version 2, Manual, Department of MME, KLU Leuven, Belgium (1995), p. 5.Google Scholar
  27. 27.
    Bunge H J, Texture Analysis in Materials Science: Mathematical Methods, Elsevier (ISBN9781483278391).Google Scholar
  28. 28.
    Rios P R, Siciliano F Jr, Ricardo H, Sandi Z, Plaut R L, and Padilha A F, Mater Res 8 (2005) 225.Google Scholar
  29. 29.
    Samajdar I, Verlinden B, Van Houtte P, and Vanderschueren D, Mater Sci Eng A 238 (1997) 343.CrossRefGoogle Scholar
  30. 30.
    Sinclair C W, Mithieux J D, Schmitt J H, and Brechet Y, Metall Mater Trans A 36 (2005) 3205.CrossRefGoogle Scholar
  31. 31.
    Wright S I, Nowell M M, and Field D P, Microsci Microanal 17 (2011) 316.CrossRefGoogle Scholar
  32. 32.
    Mitsche S, Poelt P, and Sommitsch C, J Microsci 227 (2007) 267.CrossRefGoogle Scholar
  33. 33.
    Fei G, Zhenyu L, Haitao L, and Guodong W, Mater Charact 75 (2013) 93.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  • Pradyumna Kumar Parida
    • 1
    Email author
  • Arup Dasgupta
    • 1
  • Durga Prasad
    • 2
  • R. Mythili
    • 1
  • Saroja Saibaba
    • 1
  1. 1.Materials Characterisation GroupIndira Gandhi Centre for Atomic Research, HBNIKalpakkamIndia
  2. 2.Research and Development DivisionTATA SteelJamshedpurIndia

Personalised recommendations