Advertisement

Leaching of Rare Earth Metals from Phosphor Coating of Waste Fluorescent Lamps

  • Amit AnandEmail author
  • Randhir Singh
  • Abdul Rauf Sheik
  • Malay Kumar Ghosh
  • Kali Sanjay
Technical Paper
  • 54 Downloads

Abstract

Phosphors made from compounds of rare earth metals (REMs) are very efficient. This material needs to be recycled for recovery of REMs after the fluorescent lamps (FLs) reach end of life. This work focuses on the leaching studies of REMs from phosphor. The phosphor was recovered from the spent linear FLs by end cut-push method. After detailed characterization of phosphor, effects of parameters viz. leachant, concentration, temperature, and pulp density were studied to determine the optimum leaching conditions. By using 9% (v/v) H2SO4, 98.6% (w/w) yttrium and 96.2% (w/w) europium could be leached out from phosphor at temperature, 70 °C, time, 4 h, and pulp density, 10% (w/v). The residue generated was treated with 54% (v/v) HCl to leach out 98.9% (w/w) lanthanum, 98.2% (w/w) cerium and 96.5% (w/w) terbium at temperature, 90 °C, time, 2 h, and pulp density, 10% (w/v). Kinetic studies of leaching reactions were also carried out.

Keywords

Leaching Rare earth metals Phosphor Waste recycling Fluorescent lamps 

Notes

Acknowledgements

Infrastructure of the Hydro and Electrometallurgy Department of CSIR-IMMT, CSC0101 (MULTIFUN) and Polymetallic Nodules Programme (MoES, New Delhi) is gratefully acknowledged. The authors are thankful to Dr S.K. Biswal and Mr. S.K Jena, CSIR-IMMT, for their support in characterization of REMs by ICP-OES. J. Samantray is thanked for her help with alkali digestion of phosphor and residue samples.

References

  1. 1.
    Gupta C K, and Krishnamurthy N, Extractive Metallurgy of Rare Earths, 2nd edn, CRC Press, Boca Raton (2016).Google Scholar
  2. 2.
    Bauer D, Diamond D, Li J, Sandalow D, Telleen P, and Wanner B, Critical Materials Strategy, a report by US department of energy. URL https://www.energy.gov/sites/prod/files/DOE_CMS2011_FINAL_Full.pdf (2011) (accessed 12.11.18).
  3. 3.
    Humphries M, Rare Earth Elements: The Global Supply Chain, (2013).Google Scholar
  4. 4.
    E-waste Market Grew Nearly 10% in 2010; Growth Expected Through Decade. URL https://www.sbireports.com/about/release.asp?id=2468 (2011) (accessed 3.4.17).
  5. 5.
    Meyer L, and Bras B, in Proc. International Symposium on Sustainable Systems and Technology, IEEE, Chicago, p 1 (2011).Google Scholar
  6. 6.
    Statistics for Lighting Industry in India, 2015. URL http://www.elcomaindia.com/wp-content/uploads/FINAL_2015_Lighting_Industry_India.pdf (2015) (accessed 3.15.17).
  7. 7.
    Liu H, Zhang S, Pan D, Tian J, Yang M, Wu M, et al., J Hazard Mater 272 (2014) 96.CrossRefGoogle Scholar
  8. 8.
    Tunsu C, Petranikova M, Ekberg C, and Retegan T, Sep Purif Technol 161 (2016) 172.CrossRefGoogle Scholar
  9. 9.
    Nakamura T, Nishihama S, and Yoshizuka K, Solvent Extr Res Dev, Jpn 14 (2007) 105.Google Scholar
  10. 10.
    Takahashi T, Takano A, Saitoh T, Nagano N, Hirai S, and Shimakage K, Shigen to Sozai 117 (2001) 579.CrossRefGoogle Scholar
  11. 11.
    Tunsu C, Petranikova M, Gergorić M, Ekberg C, and Retegan T, Hydrometallurgy 156 (2015) 239.CrossRefGoogle Scholar
  12. 12.
    Tunsu C, Ekberg C, and Retegan T, Hydrometallurgy 144145 (2014) 91.CrossRefGoogle Scholar
  13. 13.
    De Carolis R, Fontana D, Pietrantonio M, Pucciarmati S, and Torelli G N, Environ Eng Manag J 14 (2015) 1603.CrossRefGoogle Scholar
  14. 14.
    Li H, Chin J Rare Met 34 (2010) 21.Google Scholar
  15. 15.
    De Michelis I, Ferella F, Varelli E F, and Vegliò F, Waste Manag 31 (2011) 2559.CrossRefGoogle Scholar
  16. 16.
    Innocenzi V, De Michelis I, Ferella F, and Vegliò F, Waste Manag 33 (2013) 2390.CrossRefGoogle Scholar
  17. 17.
    Yang F, Kubota F, Baba Y, Kamiya N, and Goto M, J Hazard Mater 254255 (2013) 79.CrossRefGoogle Scholar
  18. 18.
    Zhang S G, Yang M, Liu H, Pan D A, and Tian J J, Rare Met 32 (2013) 609.CrossRefGoogle Scholar
  19. 19.
    Binnemans K, Jones P T, Blanpain B, Van Gerven T, Yang Y, Walton A, et al., J Clean Prod 51 (2013) 1.CrossRefGoogle Scholar
  20. 20.
    Jüstel T, Nikol H, and Ronda C, Angew Chemie Int Ed 37 (1998) 3084.CrossRefGoogle Scholar
  21. 21.
    Tan Q, Li J, and Zeng X, Crit Rev Environ Sci Technol 45 (2015) 749.CrossRefGoogle Scholar
  22. 22.
    Belardi G, Ippolito N, Piga L, and Serracino M, Thermochim Acta 591 (2014) 22.CrossRefGoogle Scholar
  23. 23.
    Otto R, and Wojtalewicz-Kasprzak A, US Patent 20120027651 A1, (2012).Google Scholar
  24. 24.
    Innocenzi V, De Michelis I, Ferella F, Beolchini F, Kopacek B, and Vegliò F, Waste Manag 33 (2013) 2364.CrossRefGoogle Scholar
  25. 25.
    Levenspiel O, Chemical Reaction Engineering, 3rd ed., Wiley, London (1999).Google Scholar
  26. 26.
    Colussi I, Meriani S, and Monte U, Hydrometallurgy 10 (1983) 61.CrossRefGoogle Scholar
  27. 27.
    Miller J D, and Wan R-Y, Hydrometallurgy 10 (1983) 219.CrossRefGoogle Scholar
  28. 28.
    Vaughan D J, and Wogelius R A (Eds.), Environmental Mineralogy II: University Textbook, London European Mineralogical Union and the Mineralogical Society of Great Britain & Ireland, (2013).Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  1. 1.School of Minerals, Metallurgical and Materials EngineeringIndian Institute of TechnologyBhubaneswarIndia
  2. 2.Hydro and Electrometallurgy DepartmentCSIR-Institute of Minerals and Materials TechnologyBhubaneswarIndia

Personalised recommendations