Advertisement

Recovery of Valuable Metals from Copper Smelter Slag by Sulfation Roasting

  • Rashid K. NadirovEmail author
Technical Paper
  • 13 Downloads

Abstract

In the present paper, recovery of valuable metals from copper smelter slag of Balkhash copper plant (Kazakhstan) was investigated. To recover Fe, Zn and Cu to water-soluble form, the mixture of 150 g of copper slag and 60 g of 85% sulfuric acid was granulated and then roasted in the temperature range of 473–643 K (200–370 °C) followed by sulfuric acid leaching. Once the roasting temperature and duration are, respectively, 643 K (370 °C) and 150 min, the recovery% values of metals to water-soluble form reaches, accordingly: Fe—80.6, Zn—88.7, Cu—81.8. The resulting calcine was subjected to sulfuric acid leaching; after solid: liquid separation, a filtrate was obtained with the following composition, g/L: Fe2+—0.60; Zn2+—3.58; Cu2+—1.03. On adding ammonia water into the filtrate, 98% of iron was selectively precipitated, thereby separating from zinc and copper.

Keywords

Copper smelter slag Leaching Roasting 

References

  1. 1.
    Davenport W G, King M, Shlesinger M, and Biswas A K, Extractive Metallurgy of Copper, Elsevier Science Ltd., Oxford, UK, fourth ed., (2002).CrossRefGoogle Scholar
  2. 2.
    Jadhav U U, and Hocheng H, JAMME 64 (2012) 159.Google Scholar
  3. 3.
    Sukla L B., Panda S C, and Jena P K Hydrometallurgy 16 (1986) 153.CrossRefGoogle Scholar
  4. 4.
    Herreros O, Quiroz R, Manzano E, Bou C, and Vinals J, Hydrometallurgy 49 (1998) 87.CrossRefGoogle Scholar
  5. 5.
    Banza A N, Gock E, and Kongolo K, Hydrometallurgy 67 (2002) 63.CrossRefGoogle Scholar
  6. 6.
    Altundogan H S, and Tumen F, Hydrometallurgy 44 (1997) 261.CrossRefGoogle Scholar
  7. 7.
    Altundogan H S, Boyrazli M,, and Tumen F, Miner Eng 17 (2004) 465.CrossRefGoogle Scholar
  8. 8.
    Arslan C, and Arslan F, Hydrometallurgy 67 (2002) 1.CrossRefGoogle Scholar
  9. 9.
    Carranza F, Iglesias N, Mazuelos A, Romero R, and Forcat O, Miner Eng 22 (2009) 107.CrossRefGoogle Scholar
  10. 10.
    Kaksonen A H, Särkijärvi S, Puhakka J A, Peuraniemi E, Junnikkala S, and Tuovinen O H, Hydrometallurgy 159 (2016) 46.CrossRefGoogle Scholar
  11. 11.
    Yang Z, Rui-lin M, Wang-dong N, and Hui W, Hydrometallurgy 103 (2010) 25.CrossRefGoogle Scholar
  12. 12.
    Wang X, Geysen D, Padilla Tinoco S V, D’Hoker N, Van Gerven T, and Blanpain B, Miner Process Extr M 124 (2015) 83.CrossRefGoogle Scholar
  13. 13.
    Nadirov R K, Syzdykova L I, Zhussupova A K, and Usserbaev M T, Int J Miner. Process 124 (2013) 145.CrossRefGoogle Scholar
  14. 14.
    Muravyov M I, Bulaev A G, and Kondrat’eva T F, Miner Eng 64 (2014) 63.CrossRefGoogle Scholar
  15. 15.
    Dimitrijevic M D, Urosevic D M, Jancovic Z D, and Milic S M, Physicochem Probl MI 52 (2016) 409.Google Scholar
  16. 16.
    Levenspiel O, Chemical Reaction Engieering, Wiley, New York, 2nd ed. (1972).Google Scholar
  17. 17.
    Levine R D, Molecular Reaction Dynamics, Cambridge University Press (2005).Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  1. 1.Department of General and Inorganic Chemistry, Faculty of Chemistry and Chemical EngineeringAl-Farabi Kazakh National UniversityAlmatyKazakhstan

Personalised recommendations