Transactions of the Indian Institute of Metals

, Volume 72, Issue 2, pp 533–543 | Cite as

Effect of Cooling Rate on Solidification Behavior and Microstructure Evolution of As-Cast Mg–5Al–2Ca–2Sm Alloy

  • Yanhong Chen
  • Yicheng FengEmail author
  • Liping Wang
  • Erjun Guo
  • Lei Wang
  • Guilong Jia
Technical Paper


In the present work, the Mg–5Al–2Ca–2Sm alloy was fabricated in stepped type sand mold, the cooling rate varied from 0.3 to 3.5 °C/s. The solidification behavior and microstructure evolution of Mg–5Al–2Ca–2Sm alloy were carried out by computer-aided cooling curve thermal analysis method, optical microscope (OM), X-ray diffraction analysis, scanning electric microscope and transmission electron microscope. The experimental results showed that the nucleation temperature of α-Mg phase decreased with increasing cooling rate. In addition, the grain size of α-Mg phase in Mg–5Al–2Ca–2Sm alloy were 95.47 ± 1.2 μm, 88.65 ± 1.5 μm, 71.24 ± 1.7 μm and 42.35 ± 1.3 μm, which were responds to the cooling rates of 0.3 °C/s, 0.5 °C/s, 1.2 °C/s and 3.5 °C/s, respectively. There were both Al2Sm (particle structures) and (Mg, Al)2Ca (lamella structure) phases in the Mg–5Al–2Ca–2Sm alloy under different cooling rates. However, there were Mg2Ca (blocky structure) in the samples cooled in 0.5 °C/s and 0.3 °C/s. The solidification sequence of precipitated phase in Mg–5Al–2Ca–2Sm alloy could be obtained as: Al2Sm → α-Mg → (Mg, Al)2Ca → Mg2Ca. Furthermore, the volume fraction of precipitated phase increased with the cooling rate. The volume fraction of precipitated phase in Mg–5Al–2Ca–2Sm alloy were 11.86 ± 0.7%, 13.05 ± 1.2%, 16.19 ± 0.8% and 20.77 ± 0.9%, which were responds to the cooling rates of 0.3 °C/s, 0.5 °C/s, 1.2 °C/s and 3.5 °C/s, respectively.


Mg–5Al–2Ca–2Sm alloy Thermal analysis Cooling rate Microstructure evolution Precipitated phase 



The authors gratefully acknowledge the financial support from the Heilongjiang Province Natural Science Foundation (No. ZD2016011).


  1. 1.
    Kim S H, You B S, and Park S H, Alloys Comp 690 (2017) 417.CrossRefGoogle Scholar
  2. 2.
    Zhang H, Liu Y, Fan J, Roven H J, Cheng W L, Xu B S, and Dong H B, Alloys Comp 615 (2014) 687.CrossRefGoogle Scholar
  3. 3.
    Wang X J, Xu D K, Wu R Z, and Chen X B, Peng Q M, Jin L, Xin Y C, Zhang Z Q, Liu Y, Chen X H, Chen G, Deng K K, and Wang H Y, JMST 34 (2018) 245.Google Scholar
  4. 4.
    Mondal A K, Fechner D, Kumar S, Dieringa H, Maier P, and Kainer K U, Mater Sci Eng A 527(2010) 2289.CrossRefGoogle Scholar
  5. 5.
    Li G Q, Zhang J H, Wu R Z, Feng Y, Liu S J, Wang X J, Jiao Y F, Yang Q, and Meng J, JMST 34 (2017) 1076.Google Scholar
  6. 6.
    Su M, Zhang J, Feng Y, Bai Y, Wang W, Zhang Z, and Jiang F, J Alloy Compd 691 (2017) 634.CrossRefGoogle Scholar
  7. 7.
    Ozturk K, Zhong Y, Liu Z K, and Luo A A, JOM 55 (2003) 40.CrossRefGoogle Scholar
  8. 8.
    Han L, Nie X, Northwood D, and Hu H, Sae Technical Papers (2009).Google Scholar
  9. 9.
    Yang Q, Guan K, Bu F, Zhang Y, Qiu X, Zheng T, Liu X, and Meng J, Materials Characterization 113 (2016) 180-8.CrossRefGoogle Scholar
  10. 10.
    Bai J, Sun Y S, Xue F, Xue S, Qiang J, and Zhu T B, J Alloy Compd 437 (2007) 247.CrossRefGoogle Scholar
  11. 11.
    Suzuki A, Saddock N D, Terbush J R, Powell B R, Jones J W, and Pollock T M, Metall Mater Trans A 39A (2008) 696.CrossRefGoogle Scholar
  12. 12.
    Saddock N D, Suzuki A, Terbush J R, Heininger E C, Zindel J, Allison J E, Pollock T M, and Jones J W, Magnes Technol (2006) 77.Google Scholar
  13. 13.
    Powell B R, Luo A A, Rezhets V, Bommarito J J, and Tiwari B L, SAE No. 2001-01-0422.Google Scholar
  14. 14.
    Jiao Y, Zhang J, He L, Zhang M, Jiang F, Wang W, Han L, Xu L, and Wu R, Adv Eng Mater 18 (2016) 148.CrossRefGoogle Scholar
  15. 15.
    Son H T, Lee J S, Kim D G, Yoshimi K, and Maruyama K, J Alloy Compd 473 (2009) 446.CrossRefGoogle Scholar
  16. 16.
    Hu B, Peng L, Yang Y, and Ding W, Mater Des 31(2010) 3901.CrossRefGoogle Scholar
  17. 17.
    Yavari F, and Shabestari S G, JTAC 129 (2017) 655.Google Scholar
  18. 18.
    Ghoncheh M H, Shabestari S G, and Abbasi M H, JTAC 117 (2014) 1253.Google Scholar
  19. 19.
    Paramatmuni R K, Chang K M, Kang B S, and Liu X, Mater Sci Eng A 379 (2004) 293.CrossRefGoogle Scholar
  20. 20.
    Taha M A, EI-Mahallawy N A, Hamouda R M, Mater Des 23 (2002) 195.CrossRefGoogle Scholar
  21. 21.
    Paliwal M, and Jung L H, Acta Materialia 61 (2013) 4848.CrossRefGoogle Scholar
  22. 22.
    Masoumi M, and Pekguleryuz M, AFS Trans 117 (2009) 617-26.Google Scholar
  23. 23.
    Caceres C H, Davidson C J, Griffiths J R, and Newton C L, Mater Sci Eng A 35 (2002) 344.CrossRefGoogle Scholar
  24. 24.
    Wang C, Dai J, Liu W, Zhang L, and Wu G, J Alloy Compd 620 (2015) 172.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  • Yanhong Chen
    • 1
  • Yicheng Feng
    • 1
    Email author
  • Liping Wang
    • 1
  • Erjun Guo
    • 1
  • Lei Wang
    • 1
  • Guilong Jia
    • 1
  1. 1.School of Materials Science and EngineeringHarbin University of Science and TechnologyHarbinPeople’s Republic of China

Personalised recommendations