Transactions of the Indian Institute of Metals

, Volume 72, Issue 2, pp 511–521 | Cite as

Dissimilar Friction Stir Butt Welding of AA6061-T6 and AA6061/SiCp Composite: Microstructural Characteristics, Impact Toughness, Hardness, Strength Under Transverse Impact

  • Nahit ÖztoprakEmail author
  • Ç. Emine Yeni
  • B. Gören Kıral
Technical Paper


Impact response of dissimilar friction stir welded (FSWed) joints between a monolithic alloy and metal matrix composite has not been yet reported and thus requires a detailed investigation. Therefore, an exhaustive research on the microstructure, microhardness, tensile properties, fracture toughness and failure response under transverse impact of the FSWed AA6061-T6/AA6061 + SiCp joint was conducted within the study. The plates of size 300 × 120 × 3.2 mm3 were friction stir butt welded using a tool rotational speed of 1000 rpm, welding speed of 80 mm/min, tilt angle of 1° and a penetration depth of 0.2 mm into the upper surface of the workpieces. The obtained results indicated that there is no defect in the weld zone of the FSWed dissimilar joint. Microhardness distribution across the mid-thickness of the joint demonstrated superior Vickers hardness within the nugget zone compared to that of AA6061-T6. In addition, tensile rupture took place away from the weld region on the advancing side in the joint for all transverse tensile test specimens. It was also demonstrated that the FSW process resulted in a significant enhancement in fracture toughness compared to those of the base materials. Furthermore, weld nugget of the joint withstood the applied transverse impact energies ranging between 2.5 and 7.5 J.


Friction stir welding Microhardness Tensile test Impact toughness Aluminum alloys Metal matrix composites 



Funding was provided by Dokuz Eylul University Department of Scientific Research Projects (BAP-2016.KB.FEN.021).


  1. 1.
    Yazdipour A, and Heidarzadeh A, Int J Adv Manuf Technol 87 (2016) 3105.CrossRefGoogle Scholar
  2. 2.
    Khan N Z, Siddiquee A N, Khan Z A, and Mukhopadhyay A K, J Alloys Compd 695 (2017) 2902.CrossRefGoogle Scholar
  3. 3.
    Yan Z, Liu X, and Fang H, J Mater Sci Technol 32 (2016) 1378.CrossRefGoogle Scholar
  4. 4.
    Sharifitabar M, and Nami H, Compos: Part B: Eng 42 (2011) 2004.CrossRefGoogle Scholar
  5. 5.
    Guo J, Gougeon P, and Chen X G, Mater Sci Eng: A 553 (2012) 149.CrossRefGoogle Scholar
  6. 6.
    Cavaliere P, Rossi G L, Di Sante R, and Moretti M, Int J Fatigue 30 (2008) 198.CrossRefGoogle Scholar
  7. 7.
    Guo J, Amira S, Gougeon P, and Chen X G, Mater Charact 62 (2011) 865.CrossRefGoogle Scholar
  8. 8.
    Ahn B W, Choi D H, Kim Y H, and Jung S B, Trans Nonferrous Met Soc China 22 (2012) 634.CrossRefGoogle Scholar
  9. 9.
    Salehi M, Farnoush H, and Mohandesi J A, Mater Des 63 (2014) 419.CrossRefGoogle Scholar
  10. 10.
    Zhang X Z, Chen T J, and Qin Y H, Mater Des 99 (2016) 182.CrossRefGoogle Scholar
  11. 11.
    Rajan H B M, Dinaharan I, Ramabalan S, and Akinlabi E T, J Alloys Compd 657 (2016) 250.CrossRefGoogle Scholar
  12. 12.
    Elangovan K, Balasubramanian V, and Valliappan M, Int J Adv Manuf Technol 38 (2008) 285.CrossRefGoogle Scholar
  13. 13.
    Fadaeifard F, Matori K A, Aziz S A, Zolkarnain L, and Rahim M A Z B A, Metals 7 48 (2017). Scholar
  14. 14.
    Hejazi I, and Mirsalehi S E, Trans Nonferrous Met Soc China 26 (2016) 676.CrossRefGoogle Scholar
  15. 15.
    Wang T, Zou Y, and Matsuda K, Mater Des 90 (2016) 13.CrossRefGoogle Scholar
  16. 16.
    Ahmadnia M, Shahraki S, and Kamarposhti M A, Int J Adv Manuf Technol 87 (2016) 2337.CrossRefGoogle Scholar
  17. 17.
    Rodriguez R I, Jordon J B, Allison P G, Rushing T, and Garcia L, Mater Des 83 (2015) 60.CrossRefGoogle Scholar
  18. 18.
    Ilangovan M, Boopathy S R, and Balasubramanian V, Trans Nonferrous Met Soc China 25 (2015) 1080.CrossRefGoogle Scholar
  19. 19.
    Pirondi A, Collini L, and Fersini D, Eng Fract Mech 75 (2008) 4333.CrossRefGoogle Scholar
  20. 20.
    Minak G, Ceschini L, Boromei I, and Ponte M, Int J Fatigue 32 (2010) 218.CrossRefGoogle Scholar
  21. 21.
    Periyasamy P, Mohan B, Balasubramanian V, Rajakumar S, and Venugopal S, Trans Nonferrous Met Soc China 23 (2013) 942.CrossRefGoogle Scholar
  22. 22.
    Zheng Q, Feng X, Shen Y, Huang G, and Zhao P, J Alloys Compd 695 (2017) 952.CrossRefGoogle Scholar
  23. 23.
    Cho J H, Kang S H, Han H N, and Oh K H, Met Mater Int 14 (2008) 247.CrossRefGoogle Scholar
  24. 24.
    Shindo D J, Rivera A R, and Murr L E, J Mater Sci 37 (2002) 4999.CrossRefGoogle Scholar
  25. 25.
    Feng A H, Xiao B L, and Ma Z Y, Compos Sci Technol 68 (2008) 2141.CrossRefGoogle Scholar
  26. 26.
    Dinaharan I, and Murugan N, Met Mater Int 18 (2012) 135.CrossRefGoogle Scholar
  27. 27.
    Cioffi F, Fernández R, Gesto D, Rey P, Verdera D, and González-Doncel G Compos: Part A 54 (2013) 117.CrossRefGoogle Scholar
  28. 28.
    Kalaiselvan K, Dinaharan I, and Murugan N, Mater Des 55 (2014) 176.CrossRefGoogle Scholar
  29. 29.
    Ipekoglu G, Erim S, and Cam G, Metall Mater Trans A 45 (2014) 864.CrossRefGoogle Scholar
  30. 30.
    Malopheyev S, Vysotskiy I, Kulitskiy V, Mironov S, and Kaibyshev R, Mater Sci Eng: A 662 (2016) 136.CrossRefGoogle Scholar
  31. 31.
    Ji S D, Meng X C, Ma L, and Gao S S, Int J Adv Manuf Technol 87 (2016) 3051.CrossRefGoogle Scholar
  32. 32.
    Juárez J C V, Almaraz G M D, Hernández R G, and López J J V, Adv Mater Sci Eng 2016 (2016) 1–9. Scholar
  33. 33.
    Padhy G K, Wu C S, Gao S, and Shi L, Mater Des 92 (2016) 710.CrossRefGoogle Scholar
  34. 34.
  35. 35.
    He J, Ling Z, and Li H, Int J Adv Manuf Technol 84 (2016) 1953.CrossRefGoogle Scholar
  36. 36.
    Oztoprak N, Yeni C E, and Kiral B G, Mater Res Express 5 (2018) 066547.CrossRefGoogle Scholar
  37. 37.
    Mao Y, Ke L, Liu F, Liu Q, Huang C, and Xing L, Mater Des 62 (2014) 334.CrossRefGoogle Scholar
  38. 38.
    Ipekoğlu G, and Cam G, Metall Mater Trans A 45 (2014) 3074.CrossRefGoogle Scholar
  39. 39.
    Pantelis D I, Karakizis P N, Daniolos N M, Charitidis C A, Koumoulos E P, and Dragatogiannis D A, Mater Manuf Process 31 (2016) 264.CrossRefGoogle Scholar
  40. 40.
    Pirondi A, and Collini L, Int J Fatigue 31 (2009) 111.CrossRefGoogle Scholar
  41. 41.
    Sivananth V, Vijayarangan S, and Rajamanickam N, Mater Sci Eng: A 597 (2014) 304.CrossRefGoogle Scholar
  42. 42.
    Jakubczak P, Bieniaś J, Majerski K, Ostapiuk M, and Surowska B, Aircr Eng Aerosp Technol Int J 86 (2014) 287.CrossRefGoogle Scholar
  43. 43.
    Bieniaś J, Jakubczaka P, Surowska B, and Dragan K, Arch Civ Mech Eng 15 (2015) 925.CrossRefGoogle Scholar
  44. 44.
    Ekici R, and Kaburcuk M, J Compos Mater 49 (2015) 853.CrossRefGoogle Scholar
  45. 45.
    Cerit A A, Mater Des 57 (2014) 330.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringDokuz Eylul UniversityIzmirTurkey

Personalised recommendations