Transactions of the Indian Institute of Metals

, Volume 72, Issue 2, pp 487–500 | Cite as

Mechanical Properties and Microstructures on Dissimilar Metal Joints of Stainless Steel 301 and Aluminum Alloy 1100 by Micro-Resistance Spot Welding

  • Ario Sunar BaskoroEmail author
  • Hakam Muzakki
  • Gandjar Kiswanto
  • Winarto Winarto
Technical Paper


Aluminum and stainless steel are metals that have some mechanical property advantages. Welding technology has been developed to join both different and dissimilar metals applied in a construction. The property advantages have been used to improve the performance of a construction. However, welding performance still creates a problem as a result of properties’ differences in metals. This study investigated the mechanical properties of a steel-aluminum joint with the thickness of less than 1 mm, welded by resistance spot welding (RSW); it is called a micro-RSW. Mechanical properties of the joint were analyzed by tensile test and were measured at the fracture area on the tensile test specimen. Moreover, it also analyzed intermetallic microstructure in the nugget or welding joint. Welding time of 8 CT was an optimum parameter on a welding process to get the maximum load. The fractographic structure of a stainless steel-aluminum joint showed a brittle nugget. Moreover, the fracture area on the aluminum side was larger than that of the stainless steel. Intermetallic compound (IMC) was created by melting and joining it through the heat input in the welding process. IMC in SS301-AA1100 nugget affected a brittle joint.


Dissimilar metals Micro-resistance spot welding Mechanical properties Fractography and microstructures 



The authors would like to extend a lot of appreciation to the Ministry of Research and Technology and Higher Education for its financial support through the PTUPT program with contract number of 488/UN2.R3.1/HKP05.00/2018.


  1. 1.
    Dong L, Chen W, Hou L, Liu Y, and Luo Q, J Mater Process Technol 238 (2016) 325.CrossRefGoogle Scholar
  2. 2.
    Sun M, Niknejad S T, Zhang G, Lee M K, Wu L, and Zhou Y, Mater Des 87 (2015) 905.CrossRefGoogle Scholar
  3. 3.
    Piccini J M, Svoboda H G, Proc Mater Sci 9 (2015) 504.CrossRefGoogle Scholar
  4. 4.
    Evans W T, Cox C, Gibson B T, Strauss A M, and Cook G E, J Manuf Process 23 (2016) 115.CrossRefGoogle Scholar
  5. 5.
    Ezazi M A, Yusof F, Sarhan A A D, Shukor M H A, and Fadzil M, Mater Des 87 (2015) 105.Google Scholar
  6. 6.
    Sahu P K, Pal S, Pal S K, and Jain R, J Mater Process Technol 235 (2016) 55.CrossRefGoogle Scholar
  7. 7.
    Wu X, Liu T, and Cai W, J Manuf Process 20 (2015) 515.CrossRefGoogle Scholar
  8. 8.
    Satpathy M P, and Sahoo S K, J Manuf Process 22 (2016) 108.Google Scholar
  9. 9.
    Kuryntsev S V, Morushkin A E, and Gilmutdinov A K, Opt Lasers Eng 90 (2017) 101.CrossRefGoogle Scholar
  10. 10.
    Huang Z, and Yanagimoto J, J Mater Process Technol 225 (2015) 393.CrossRefGoogle Scholar
  11. 11.
    Mehta K P, and Badheka V J, J Mater Process Technol 239 (2017) 336.CrossRefGoogle Scholar
  12. 12.
    Ighodaro O L, Biro E, and Zhou Y N, J Mater Process Technol 236 (2016) 64.CrossRefGoogle Scholar
  13. 13.
    Kang J, Chen Y, Sigler D, Carlson B, and Wilkinson D S, Eng Failure Anal 69 (2016) 57.CrossRefGoogle Scholar
  14. 14.
    Sun D, Zhang Y, Liu Y, Gu X, Li H, Mater Des 109 (2016) 596.CrossRefGoogle Scholar
  15. 15.
    Zhang H, Qiu X, Bai Y, Xing F, Yu H, and Shi Y, Mater Des 63 (2014) 151.Google Scholar
  16. 16.
    Yuan X, Li C, Chen J, Li X, Liang X, and Pan X, J Mater Process Technol 239 (2017) 31.CrossRefGoogle Scholar
  17. 17.
    Bina M H, Jamali M, Shamanian M, Sabet H, Int J Adv Manuf Technol 75 (2014) 1371.Google Scholar
  18. 18.
    Baskoro A S, Suwarsono, Kiswanto G, and Winarto, Appl Mech Mater 493 (2014) 739.CrossRefGoogle Scholar
  19. 19.
    Papaefthymioua S, Goulas C, and Gavalas E, J Mater Process Technol 216 (2015) 133.Google Scholar
  20. 20.
    Baskoro A S, Muzakki H, Winarto, Appl Mech Mater 842 (2016) 120.CrossRefGoogle Scholar
  21. 21.
    Wan X, Wang Y, and Zhang P, J Mater Process Technol 214 (2014) 2723.CrossRefGoogle Scholar
  22. 22.
    Baskoro A S, Muzakki H, Kiswanto G, and Winarto, Int J Technol 7 (2017) 1306.Google Scholar
  23. 23.
    Baskoro A S, Muzakki H, and Winarto, ARPN J Eng Appl Sci 11 (2016) 1050.Google Scholar
  24. 24.
    Kianersi D, Mostafaei A, and Amadeh A A, Mater Des 61 (2014) 251.CrossRefGoogle Scholar
  25. 25.
    Krajcarz F, Gourgues-Lorenzon A-F, Lucas E, and Pineau A, Int J Fract 181 (2013) 209.CrossRefGoogle Scholar
  26. 26.
    Gibson B T, Ballun M C, Cook G E, and Strauss A M, J Manuf Process 18 (2015) 12.CrossRefGoogle Scholar
  27. 27.
    Xu H, Xu M J, Yu C, Lu H, Wei X, Chen J M et al, J Mater Process Technol 240 (2017) 162.CrossRefGoogle Scholar
  28. 28.
    Razmpoosh M H, Shamanian M, Esmailzadeh M, Mater Des 67 (2015) 571.CrossRefGoogle Scholar
  29. 29.
    Li Y, Zhang Y, Bi J, Luo Z, Mater Des 83 (2015) 577.CrossRefGoogle Scholar
  30. 30.
    Zhang W, Sun D, Han L, and Liu D, Mater Des 57 (2014) 186.CrossRefGoogle Scholar
  31. 31.
    Seli H, Noh M Z, Ismail A I M, Rachman E, and Ahmad Z A, J Alloys Compd 506 (2010) 703.CrossRefGoogle Scholar
  32. 32.
    Li P, Li J, Dong H, and Ji C, Mater Des 127 (2017) 311.CrossRefGoogle Scholar
  33. 33.
    Uday M B, Fauzi M N A, Zuhailawati H, and Ismail A B, Mater Sci Eng A 528 (2011) 1348.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  1. 1.Mechanical Engineering Department, Faculty of EngineeringUniversitas IndonesiaDepokIndonesia
  2. 2.Metallurgical and Materials Engineering Department, Faculty of EngineeringUniversitas IndonesiaDepokIndonesia

Personalised recommendations