Transactions of the Indian Institute of Metals

, Volume 72, Issue 2, pp 401–409 | Cite as

Influence of Manganese and Boron Alloying and Processing Conditions on the Microstructure and the Mechanical Properties of 0.4% Carbon Steels

  • G. BalachandranEmail author
  • K. Menaka
  • D. Ravichandar
Technical Paper


The performance of three steels with 0.4% carbon content was evaluated in the warm forging condition and benchmarked against the as-hot-deformed and hardening and tempering condition. The steels include a plain carbon steel S45C, a carbon-manganese steel 40Mn5 and a carbon-manganese-boron-alloyed steel 15B41. Such lean alloyed steels are preferred by automotive companies for component manufacture. In the as-hot-rolled condition, the steel with a ferrite pearlite microstructure shows, a good strength and lowest impact toughness. In the hardened and tempered condition at 650 °C, a tempered martensite microstructure with a moderate improvement in strength and significant enhancement in impact toughness, than the hot-rolled steel, is obtained. The steel subjected to warm forging at 760 °C, shows a ferrite pearlitic microstructure with a moderate improvement in strength but with the highest impact toughness level. The microstructure evolution at the various processing conditions has been brought out and correlated with the mechanical properties. The relative merits in processing the steels at the different processing conditions show that warm forging is an effective means to achieve the highest strength toughness combination in a ferrite pearlitic matrix.


Carbon steel Low-temperature deformation Warm forging Grain refinement Strength Impact toughness 


  1. 1.
    Orr J, J Microsc 94 (1971) 205.CrossRefGoogle Scholar
  2. 2.
    Storojeva L, Kaspar R, and Ponge D, ISIJ Int 44 (2004) 1211.CrossRefGoogle Scholar
  3. 3.
    Ochi T, Takada H, Kubota M, Kanisawa H, and Naito K, Nippon Steel Tech Rep 80 (1999) 9.Google Scholar
  4. 4.
    Song R, Ponge D, and Raabe D, Acta Mater 53 (2005) 4881.CrossRefGoogle Scholar
  5. 5.
    file:///C:/Users/1050023/Downloads/lecture-Max-Planck-Institute-Japan-ISUGS2007-Dual-phase-steels-02.pdf p.70.Google Scholar
  6. 6.
    Zhao P, and J D Boyd, Mater Sci Technol 23 (2007) 1186.CrossRefGoogle Scholar
  7. 7.
    Garcia-Mateo C, Lopez B, and Rodriguez-Ibabe J M, J Iron Steel Res Int 18 (2011) 822.Google Scholar
  8. 8.
    Spena P R, and Firrao D, Mater Sci Eng A 560 (2013) 208.CrossRefGoogle Scholar
  9. 9.
    Skubisz P, and Lisiecki Ł, Key Eng Mater 611–612 (2014) 167.CrossRefGoogle Scholar
  10. 10.
    Caminaga C, Botta Filho W J, Silva M L, and Button S T, Procedia Eng 10 (2011) 512.CrossRefGoogle Scholar
  11. 11.
    Shena X J, Tanga S, Wua Y J, Yanga X L, Chena J, Liua Z Y, Misra R D K, and Wang G D, Mater Sci Eng A 685 (2017) 194.CrossRefGoogle Scholar
  12. 12.
    Padap A K, Chaudhari G P, Pancholi V, and Nath S K, Mater Des 31 (2010) 3816.CrossRefGoogle Scholar
  13. 13.
    Reynold H, and Naylor D J, Mater Sci Technol 4 (1988) 586.CrossRefGoogle Scholar
  14. 14.
  15. 15.
    Lutsenko A., Abschlubericht, Kommission der Europäischen Gemeischaften, Luxembourg 136 (1991) 586.Google Scholar
  16. 16.
    Calcagnotto M, Ponge D, and Raabe D, Mater Sci Eng A 527 (2010) 7832.Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  1. 1.JSW Steel Limited, Salem WorksSalemIndia

Personalised recommendations