Transactions of the Indian Institute of Metals

, Volume 72, Issue 2, pp 353–367 | Cite as

Investigations on Microstructural Evolutions and Mechanical Properties of Dual-Phase 600 Steel and AA6082-T6 Aluminum Alloy Dissimilar Joints Fabricated by Friction Stir Welding

  • M. D. Sameer
  • Anil Kumar BirruEmail author
Technical Paper


In this research work, dual-phase 600 steel grade and AA6082-T6 aluminum alloy dissimilar flat plates of thickness 2 mm were fabricated by using friction stir welding. Three tool rotational speeds of 560, 710 and 900 rpm, three tool traverse speeds of 24, 32 and 40 mm/min, three tool offsets of 0.8, 1.3 and 1.8 mm and constant tool tilt angle of 0.5° were used to obtain the defect-free welds. Macrostructure, microstructure evolutions, tensile strength, microhardness tests were carried out to assess the welding properties of dissimilar steel and aluminum welded joints. The highest tensile strength of 240 MPa with the joint efficiency of 85% of the base metal was obtained when the parameters were set to tool rotational speed of 710 rpm, traverse speed of 40 mm/min, tool tilt angle of 0.5° and tool pin offset of 1.3 mm using a tungsten carbide tool. The highest microhardness of 246 HV was obtained in the stir zone. Scanning electron microscopy was used to study the joint interface structure. The presence of Fe5Al8 and FeAl intermetallic compounds was confirmed by energy-dispersive X-ray and X-ray diffraction analysis.


Friction stir welding Dual-phase 600 steel Aluminum alloy Microstructure Tensile strength 



Mr. Sameer MD, Research Scholar (Enrollment No. 16407002) under the guidance of Dr. Anil Kumar Birru, Assistant professor in Department of Mechanical Engineering, NIT Manipur, would also like to acknowledge the cooperation of Mr. Subhabrata Mukherjee, SSAB Europe, for his staunch support and providing dual-phase steel material and Fr. Rev Augustine Reddy Director, CJITS, for his support in carrying this research work.


  1. 1.
    Cole G S and Sherman A M, Mater Charact 353 (1995) 9.Google Scholar
  2. 2.
    Meschut G, Janzen V, and Olfermann T, J Mater Eng Perform 23 (2014) 1515.CrossRefGoogle Scholar
  3. 3.
    Sakiyama T, Murayama G, Naito Y, Saita K, Oikawa YMH, and Nose T, Nippon Steel Technical Report (2013).Google Scholar
  4. 4.
    Fekete J R and Hall J N, Processing and Applications, Automotive Steels, Woodhead Publishing (2017), p 1.Google Scholar
  5. 5.
    Xia M, Sreenivasan N, Lawson S, Zhou Y, and Tian Z, J Eng Mater Technol 129 (2007) 446.CrossRefGoogle Scholar
  6. 6.
    Gopi S and Manonmani K, Aust J Mech Eng 11 (2013) 131.CrossRefGoogle Scholar
  7. 7.
    Das H, Basak S, Das G, Pal TK, Int J Adv Manuf Technol 64 (2013) 53.CrossRefGoogle Scholar
  8. 8.
    Thomas W M, Nicholas E D, Needham J C, Murch M G, Templesmith P, and Dawes C J, G.B. Patent Application No. 9125978.8 (1991).Google Scholar
  9. 9.
    Mishra R S and Ma Z Y, Materials Science and Engineering: R: Reports, Elsevier (2005).Google Scholar
  10. 10.
    Flores O V, Kennedy C, Murr L, Brown D, Pappu S, Nowak B M, and Mcclure J Scr Mater 38 (1998) 703.CrossRefGoogle Scholar
  11. 11.
    Dilip J J S, Koilraj M, Sundareswaran V, Janakiram G D, and Koteswara Rao S R, Trans Indian Inst Met 63 (2010) 757.CrossRefGoogle Scholar
  12. 12.
    Shuhuai X L and Ni J, Int JAdv manuf Technol 82 (2016) 2183.CrossRefGoogle Scholar
  13. 13.
    Rafiei R, Ostavari Moghaddam A, Hatami M R, Khodabakshi F, Int J Adv Manuf Technol 90 (2016) 2785.CrossRefGoogle Scholar
  14. 14.
    Ramachandran K K, Murugan N, and Shashi Kumar S, Mater Sci Eng A 639 (2015) 219.CrossRefGoogle Scholar
  15. 15.
    Dehghani M, AMousavi S A A, and Amadeh A, Trans Nonferrous Met Soc China 23 (2013) 1957.CrossRefGoogle Scholar
  16. 16.
    Uzun H, Dalle Donne C, Argagnotto A, Ghidini T, and Gambaro C, Mater Des 26 (2005) 41.CrossRefGoogle Scholar
  17. 17.
    Watanabe T, Takayama H, and Yanagisawa A, J. Mater. Process. Technol. 178 (2006) 342.CrossRefGoogle Scholar
  18. 18.
    Lee W-B, Schmuecker M, Mercardo U A, Biallas G, Jung S-B, Scr Mater 55 (2006) 355.CrossRefGoogle Scholar
  19. 19.
    Derazkola H A, Aval H J, and Elyasi M, Sci Technol Weld Join 20 (2015) 553.CrossRefGoogle Scholar
  20. 20.
    Jiang W H and Kovacevic R, Proc Inst Mech Eng B J Eng Manuf 218 (2004) 1323.CrossRefGoogle Scholar
  21. 21.
    Kundu S, Roy D, Bhola R, Bhattacharjee D, Mishra B, and Chatterjee S, Mater Des 50 (2013) 370.CrossRefGoogle Scholar
  22. 22.
    Yazdipour A and Heidarzadeh A, J Alloys Compd. 680 (2016) 595.CrossRefGoogle Scholar
  23. 23.
    Swamy M M, Muthukumaran S, and Kiran K, Trans Indian Inst Met 70 (2017) 1221.CrossRefGoogle Scholar
  24. 24.
    Sharma G and Dwivedi D K Trans Indian Inst Met 70 (2017) 201.CrossRefGoogle Scholar
  25. 25.
    Chen T P and Lin W B, Sci Technol Weld Join 15 (2010) 279.CrossRefGoogle Scholar
  26. 26.
    Aliasghar F, Ali S, Moghaddam O, and Amin A A, J Manuf Process 30 (2017) 418.CrossRefGoogle Scholar
  27. 27.
    Moradi Faradonbeh A, Shamanian M, Edris H, Paidar M and Bozkurt Y J Mater Eng Perform 27(2018) 835.CrossRefGoogle Scholar
  28. 28.
    ASTM E-8/E8M-11, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA (2011).Google Scholar
  29. 29.
    Fukumoto S, Tsubakino H, Okita K, Aritashi M, and Tomita T, Mater Sci Technol 14 (1998) 33.CrossRefGoogle Scholar
  30. 30.
    Nandan R, Debroy T, and Badheshia H K D H, Progr Mater Sci 53 (2008) 980.CrossRefGoogle Scholar
  31. 31.
    Paul, R R, Martikainen J, and Suoranta R, Int J Mech Mater Eng 10 (2015) 26.CrossRefGoogle Scholar
  32. 32.
    Liu X, Lan S, and Ni J Mater Des 59 (2014) 50.CrossRefGoogle Scholar
  33. 33.
    Pantelis D I, Karakizis P N, Daniolos N M, Charitidis C A, Koumoulos E P, and Dragatogiannis D A, Mater Manuf Process 31 (2015) 264.CrossRefGoogle Scholar
  34. 34.
    Arora A, Nandan R, Reynolds A P, and DebRoy T, Scr Mater 60 (2009) 13.CrossRefGoogle Scholar
  35. 35.
    Arora A, Deb-Roy T, and Bhadeshia H K D H, Acta Mater 59 (2002) 2020.CrossRefGoogle Scholar
  36. 36.
    Yilmaz M, Cöl M, and Acet M, Mater Charact 49 (2002) 421.CrossRefGoogle Scholar
  37. 37.
    Mostafapour A, Jamalian H M, Bolghari A J, and Chamanara A, Int J Adv Manuf Technol 93 (2017) 3599.CrossRefGoogle Scholar
  38. 38.
    Abnar B, Kazeminezhad M, and Kokabi A H, Trans Nonferr Met Soc China, 25 (2015) 2147.CrossRefGoogle Scholar
  39. 39.
    Biallas G, Braun R, Donne C D, Staniek G, and Kaysser W A, First International Conference on Friction Stir Welds, Thousand Oaks, CA (1999).Google Scholar
  40. 40.
    Dragatogiannis D A, Koumoulos E P, Kartsonakis I, Pantelis D I, Karakizis P N, and Charitidis C A, Mater Manuf Process 31 (2015) 2101.CrossRefGoogle Scholar
  41. 41.
    Rathod M and Kutsuna M, Weld J 83 (2004) 16.Google Scholar
  42. 42.
    Li X, Scherf A, Heilmaier M, and Stein F, J Phase Equilib Diffus 37 (2016) 162.CrossRefGoogle Scholar
  43. 43.
    Sundman B, Ohnuma I, Dupin N, Kattner UR, and Fries SG Acta Mater. 57 (2009) 2896.CrossRefGoogle Scholar
  44. 44.
    Haghshenas M, Abdel-Gwadb A, Omranb A M, Gökçec B, Sahraeinejada S, and Gerlicha A P, Mater Des 55 (2014) 442.CrossRefGoogle Scholar
  45. 45.
    Akinlabi ET, J Mater Eng Perform 21 (2012) 1514.CrossRefGoogle Scholar
  46. 46.
    Coelho R S, Kostka A, Santos J F, and Kaysser-pyzalla A, Mater Sci Eng A 556 (2012) 175.CrossRefGoogle Scholar
  47. 47.
    Murugan B, Thirunavukarasu G, Kundu S, Kailash S V, and Chatterjee S, J Mater Eng Perform 27 (2018) 2921.CrossRefGoogle Scholar
  48. 48.
    Darzi Naghibi H, Shakeri M and Hosseinzadeh M Trans Indian Inst Met 69 (2016) 891.CrossRefGoogle Scholar
  49. 49.
    Meshram S D, Madhusudhan Reddy G, Defence Technol 11 (2015) 292.CrossRefGoogle Scholar
  50. 50.
    Bang H, Bang H, Jeon G, Oh I, and Seung Ro C, Mater Des 37 (2012) 48.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentNational Institute of Technology, ManipurImphalIndia

Personalised recommendations