Advertisement

Transactions of the Indian Institute of Metals

, Volume 72, Issue 1, pp 257–270 | Cite as

End-point Prediction of BOF Steelmaking Based on KNNWTSVR and LWOA

  • Chuang Gao
  • Minggang ShenEmail author
  • Xiaoping Liu
  • Lidong Wang
  • Ming Chen
Technical Paper
  • 24 Downloads

Abstract

Basic oxygen furnace (BOF) steelmaking plays an important role in steelmaking process. Therefore, research on BOF steelmaking modeling is very necessary. In this paper, a novel combination prediction model has been proposed, which consists of a time series prediction model and a compensation prediction model. Both models are established by k-nearest neighbor-based weighted twin support vector regression (KNNWTSVR) algorithm. By introducing Lévy flight algorithm and inertia weight, an improved algorithm of whale optimization algorithm (WOA) called Lévy flight WOA has been initially proposed to solve the optimization problem in the objective function of KNNWTSVR. The simulation results show that the proposed models are effective and feasible. Within different error bounds (0.005% for carbon content model and 10 °C for temperature model), the strike rates of carbon content and temperature both achieve 93%, and a double strike rate of 86% is obtained, which can provide a significant reference for real BOF applications, and the proposed method is also appropriate for the prediction models of other metallurgical applications.

Keywords

Basic oxygen furnace Twin support vector regression Whale optimization algorithm Prediction model 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grants 61403177.

References

  1. 1.
    Brämming M, Björkman B, and Samuelsson C, Steel Res Int 87 (2016) 301.CrossRefGoogle Scholar
  2. 2.
    Wang Z, Xie F M, and Wang B, Steel Res Int 85 (2014) 599.CrossRefGoogle Scholar
  3. 3.
    Han M, and Liu C, Appl Soft Comp 19 (2014) 430.CrossRefGoogle Scholar
  4. 4.
    Wang X Z, Han M, and Wang J, Eng Appl Artif Intell 23 (2010) 1012.CrossRefGoogle Scholar
  5. 5.
    Han M, and Cao Z J, Neurocomputing 149 (2015) 1245.CrossRefGoogle Scholar
  6. 6.
    Kong L X, Hodgson P D, and Collinson D C, ISIJ Int 38 (1998) 1121.CrossRefGoogle Scholar
  7. 7.
    Frattini Fileti A M, Pacianotto T A, and Pitasse Cunha A, Eng Appl Artif Intell 19 (2006) 9.CrossRefGoogle Scholar
  8. 8.
    Jimenez J, Mochon J, and Ayala J S, ISIJ Int 44 (2004) 573.CrossRefGoogle Scholar
  9. 9.
    Jayadeva, Khemchandani R, and Chandra S, IEEE Trans on Pattern Anal Machine Intell 29 (2007) 905.CrossRefGoogle Scholar
  10. 10.
    Peng X, Neural Netw 23 (2010) 365.CrossRefGoogle Scholar
  11. 11.
    Gupta D, Appl Intell 47 (2017) 1–30.CrossRefGoogle Scholar
  12. 12.
    Xu Y and Wang L, Appl Intell 41 (2014) 299.CrossRefGoogle Scholar
  13. 13.
    Rastogi R, Anand P, and Chandra S, Appl Intell 46 (2016) 1.Google Scholar
  14. 14.
    Xu Y, Li X, and Pan X, Neural Comp Appl 2 (2017) 1.Google Scholar
  15. 15.
    Ye Y F, Bai L, and Hua X Y, Neurocomputing  197 (2016) 53.CrossRefGoogle Scholar
  16. 16.
    Tanveer M, Shubham K, and Aldhaifallah M, Appl Intell 44 (2016) 1.CrossRefGoogle Scholar
  17. 17.
    Parastalooi N, Amiri A, and Aliheydari P, Neurocomputing 211 (2016) 84.CrossRefGoogle Scholar
  18. 18.
    Khemchandani R, Goyal K, and Chandra S, Neural Netw 74 (2016) 14.CrossRefGoogle Scholar
  19. 19.
    Peng X, Chen D, and Kong L, Int J Mach Learn Cyber 6 (2015) 719.CrossRefGoogle Scholar
  20. 20.
    Tanveer M, and Shubham K, Int J Mach Learn Cyber 8 (2017) 807.CrossRefGoogle Scholar
  21. 21.
    Khemchandani R, Karpatne A, and Chandra S, Int J Mach Learn Cyber 4 (2013) 51.CrossRefGoogle Scholar
  22. 22.
    Mirjalili S, and Lewis A, Adv Eng Software 95 (2016) 51.CrossRefGoogle Scholar
  23. 23.
    Kennedy J, and Eberhart R, IEEE International Conference on Neural Networks (1995) p 1942.Google Scholar
  24. 24.
    Marco D, Montes O M A, and Sabrina O, Comp Intell Mag IEEE 1 (2003) 28.Google Scholar
  25. 25.
    Pinto P C, Runkler T A, and Sousa J M C, International Conference on Adaptive and Natural Computing Algorithms (2007) pp 350–357.Google Scholar
  26. 26.
    Yang X S, Int J Bio-Inspired Comp 2 (2010) 78.CrossRefGoogle Scholar
  27. 27.
    Pan W T, Knowledge-Based Syst 26 (2012) 69.CrossRefGoogle Scholar
  28. 28.
    Gandomi A H, and Alavi A H, Commun Nonlinear Sci Numer Simul 17 (2012) 4831.CrossRefGoogle Scholar
  29. 29.
    Askarzadeh A, and Rezazadeh A, Int J Energy Res 37 (2013) 1196.CrossRefGoogle Scholar
  30. 30.
    Kaveh A, and Farhoudi N, Adv Eng Software 59 (2013) 53.CrossRefGoogle Scholar
  31. 31.
    Mehrdad G, Zahra Z, and Yazdan A, Physicia A 388 (2009) 1509.CrossRefGoogle Scholar
  32. 32.
    Yang X S, and Deb S, Int J Math Modelling Numer Opt 1 (2010) 330.Google Scholar
  33. 33.
    Shi Y, and Eberhart R, Proc. of IEEE ICEC conference (1998) p 69.Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  • Chuang Gao
    • 1
  • Minggang Shen
    • 2
    Email author
  • Xiaoping Liu
    • 3
  • Lidong Wang
    • 1
  • Ming Chen
    • 1
  1. 1.School of Electronic and Information EngineeringUniversity of Science and Technology LiaoningAnshanPeople’s Republic of China
  2. 2.School of Materials and MetallurgyUniversity of Science and Technology LiaoningAnshanPeople’s Republic of China
  3. 3.Faculty of EngineeringLakehead UniversityThunder BayCanada

Personalised recommendations