Synthesis and Characterization of MnO Nano-particles Using Thermal Plasma Technique
- 17 Downloads
Abstract
MnO nano-particles were prepared from manganese oxide ore by thermal plasma technique. The size, structure and composition of feed manganese ore and synthesized MnO particles were characterized by XRD, FESEM, XPS, FTIR and Raman spectroscopic techniques, and results were reported. The naturally occurring manganese oxide ore, constituting of manganese minerals like cryptomelane and pyrolusite with subordinate iron [hematite] and aluminous mineral [gibbsite], was collected from Bonai-Keonjhar belt, Odisha, eastern India, and processed in a plasma reactor under oxygen atmosphere. Nano-particles were obtained within a very short period of 10 min. These were mostly globular, rarely cubic and hexagonal in shape and varied in sizes between 10 and 100 nm. The nano-particles constituted only of manganosite (MnO) mineral. Such MnO nano-particles had large numbers of potential uses in the field of electrode materials in different rechargeable batteries, biosensors, pharmaceutical industries, piezoelectric crystals, fuel cell electrodes, catalysis and in specific biogenic and bioscience applications.
Keywords
MnO nano-particles Plasma processing XRD FESEM XPS FTIRNotes
Acknowledgements
The authors are grateful to Prof. B. K. Mishra, Director, CSIR-Institute of Minerals and Materials Technology (IMMT), Bhubaneswar, Odisha, for providing infrastructural facilities. The authors are thankful to Mrs. Swagatika Mohanty and Mrs. Geetikamayee Padhi, officials of IMMT, for carrying out FTIR, XRD and FESEM analyses. Thanks are due to Mr. Tapan kumar Dash for carrying out XPS analysis.
Compliance with Ethical Standards
Conflict of interest
The authors declare that they have no conflict of interest.
References
- 1.Schmid G, Nano-particles: From Theory to Applications, Wiley, New York (2004).Google Scholar
- 2.Frank M, and Baumer M, Phys Chem Chem Phys 2 (2002) 3723.CrossRefGoogle Scholar
- 3.Rice C, Tong Y, Oldfield E, Woeckowski A, Gahn F, Gloaguen F, Leger J M, and Lamy C, J Phys Chem B 104 (2000) 5803.CrossRefGoogle Scholar
- 4.Sau T K, Pal A, and Pal T, J Phys Chem B 105 (2001) 9266.CrossRefGoogle Scholar
- 5.Schaaff T G, and Blom D, Nano Lett 2 (2002) 507.CrossRefGoogle Scholar
- 6.Cuenya B R, Baeck S H, Jaramillo T F, and Mcfarland E W, J Am Chem Soc 125 (2003) 12928.CrossRefGoogle Scholar
- 7.Narayanan R, and El-Sayed M A, Nano Lett 4 (2004) 1343.CrossRefGoogle Scholar
- 8.Stowell C A, and Krogel B A, Nano Lett 5 (2005) 1203.CrossRefGoogle Scholar
- 9.Subramanian V, Wolf E E, and Kamat P V, J Am Soc 126 (2006) 4943.CrossRefGoogle Scholar
- 10.Kumar H, Manisha A, and Sangwan P, Int J Chem Chem Eng 3 (2013) 155.Google Scholar
- 11.Yanagisawa K, Udawatte C P, and Nasu S, J Mater Res 15 (2000) 404.CrossRefGoogle Scholar
- 12.Xu H, and Yu A, Mater Lett 61 (2007) 4043.CrossRefGoogle Scholar
- 13.Devi P S, Chatterjee M, and Ganguli D, Mater Lett 55 (2002) 205.CrossRefGoogle Scholar
- 14.Kim D W, Oh S G, Yi S C, Bae S Y, and Moon S K, Chem Mater 12 (2000) 996.CrossRefGoogle Scholar
- 15.Shukla S, Seal S, Ludwig L, and Parish C, Actuator B Chem 97 (2004) 256.CrossRefGoogle Scholar
- 16.Nam J G, Choi H, Kim S H, Song K H, and Park S C, Scr Mater 44 (2001) 2047.CrossRefGoogle Scholar
- 17.Kim S M, Seo K H, Lee J H, Kim J J, Lee H Y, and Lee J S, J Eur Ceram Soc 26 (2006) 73.CrossRefGoogle Scholar
- 18.Kim K Y, and Park S B, Mater Chem Phys 86 (2004) 210.CrossRefGoogle Scholar
- 19.Pramanik N C, Das S, and Biswas P K, Mater Lett 56 (2002) 671.CrossRefGoogle Scholar
- 20.Seo K H, Lee J H, Kim J J, Bertoni M I, Ingram B J, and Mason T O, J Am Ceram Soc 89 (2006) 3431.CrossRefGoogle Scholar
- 21.Kim B C, Lee J H, Kim J J, and Ikegami T, Mater Lett 52 (2002) 14.CrossRefGoogle Scholar
- 22.Jain K K, The Handbook of Nano-medicine, Humana Press, Totowa (2007).Google Scholar
- 23.Klabunde K J, Nanoscale Materials in Chemistry, Wiley, New York (2001).CrossRefGoogle Scholar
- 24.Niemeyer C M, Angew Chem Int Ed 40 (2001) 4128.CrossRefGoogle Scholar
- 25.Niemeyer C M, and Mirkin C A, Nano-biotechnology: Concepts, Applications and Perspectives, Wiley, Weinheim (2004).CrossRefGoogle Scholar
- 26.Yamashita T, and Vannice A, Appl Catal B 13 (1997) 141.CrossRefGoogle Scholar
- 27.Thackeray M M, Solid State Chem 25 (1997) 1.CrossRefGoogle Scholar
- 28.Kim D K, Muralidharan P, Lee H W, Ruffo R, Yang Y, Chan C K, Peng H, Huggins R A, and Cui Y, Nano Lett 8 (2008) 3948.CrossRefGoogle Scholar
- 29.Seo W S, Jo H H, Lee K, Kim B, Oh S J, and Park J T, Angew Chem Int Ed 43 (2004) 1115.CrossRefGoogle Scholar
- 30.Shen Y F, Zerger R P, Deguzman R N, Suib S L, Mccurdy L, Potter D I, and O’young C L, Science 260 (1993) 511.CrossRefGoogle Scholar
- 31.Sun B, Chen Z, Kim H S, Ahn H, and Wang G, Power Sources 196 (2011) 3346.CrossRefGoogle Scholar
- 32.Zhang X, Xing Z, Wang L, Zhu Y, Li Q, Liang J, Yu Y, Huang T, Tang K, Qian Y, and Shen X, J Mater Chem 22 (2012) 17864.CrossRefGoogle Scholar
- 33.Sun Y, Hu X, Luo W, and Huang Y, Mater Chem 22 (2012) 19190.CrossRefGoogle Scholar
- 34.Li F, Zhang L H, Evans D G, and Duan X, Colloids Surf A 244 (2004) 169.CrossRefGoogle Scholar
- 35.Schniepp H C, Li J L, Mcallister M J, Sai H, Herrera-Alonso M, Adamson D H, Prud’homme R K, Car R, Saville D A, and Aksay I A, J Phys Chem B 110 (2006) 8535.CrossRefGoogle Scholar
- 36.Peng H, Mo Z, Liao S, Liang H, Yang L, Luo F, Song H, Zhong Y, and Zhang B, Sci Rep 3 (2013).Google Scholar
- 37.Moulder J F, Stickle W F, Sobol P E, and Bomben K D, in Handbook of X-ray Photoelectron Spectroscopy, (ed) Chastain J, Perkin-Elmer Corporation, Eden Prairie (1992).Google Scholar
- 38.Sharma P K, and Whittingham M S, Mater Lett 48 (2001) 319.CrossRefGoogle Scholar
- 39.Zhang W X, Yang Z H, Liu Y, Tang S P, Han X Z, and Chen M, J Cryst Growth 263 (2004) 394.CrossRefGoogle Scholar
- 40.Bernard M C, Hugot Le Goff A, and Thi B V, J Electrochem Soc 140 (1993) 3065.CrossRefGoogle Scholar