Advertisement

Transactions of the Indian Institute of Metals

, Volume 71, Issue 12, pp 3077–3087 | Cite as

Water Cooling Effects on the Microstructural Evolution and Mechanical Properties of Friction-Stir-Processed Al-6061 Alloy

  • Yu Chen
  • Yifu Jiang
  • Fenghe Zhang
  • Hua Ding
  • Jingwei Zhao
  • Zhaohui Ren
Technical Paper
  • 36 Downloads

Abstract

Water cooling was applied during friction stir processing (FSP) of an Al-6061 alloy, and it was found that the strengthening efficiency induced by water cooling was varied, which was dependent on the initial base metal temper. As to the natural-aged Al-6061 alloy (6061-NA), the stir zone (SZ) was strengthened significantly by water cooling. Compared with the air-cooled FSP sample, the relatively high strength of the water-cooled FSP sample mainly arose from grain refinement, increased density of dislocations and large amounts of fine re-precipitated Guinier–Preston zones in the SZ. On the contrary, as to the annealed Al-6061 alloy (6061-O), the difference in the microstructural evolution between the FSP samples with and without water cooling was nonsignificant, where only finer grain morphology was observed in the water-cooled SZ, and thus the strengthening effects caused by water cooling became less.

Keywords

Aluminum alloy Initial base metal temper Friction stir processing Water cooling Properties 

Notes

Acknowledgements

The present study is financially supported by the Fundamental Research Funds for the Central Universities of China (No.N172410002-03). Besides, one of the authors, Zhaohui Ren gratefully acknowledges the financial support from the National Science Foundation of China (No.51475084) and National Support Program, National Key Research and Development (No.2017YFB1103700).

References

  1. 1.
    Mishra R S, and Ma Z Y, Mater Sci Eng R 50 (2005) 1.CrossRefGoogle Scholar
  2. 2.
    Cui G R, Ma Z Y, and Li S X, Acta Mater 57 (2009) 5718.CrossRefGoogle Scholar
  3. 3.
    Malopheyev S, Mironov S, Vysotskiy I, and Kaibyshev R, Mater Sci Eng A 649 (2016) 85.CrossRefGoogle Scholar
  4. 4.
    Chen Y, Ding H, Malopheyev S, Kaibyshev R, Cai Z H, and Yang W J, Trans Nonferrous Metals Soc 27 (2017) 789.CrossRefGoogle Scholar
  5. 5.
    Chen Y, Ding H, Li J Z, Zhao J W, Fu M J, and Li X H, Trans Nonferrous Metals Soc 25 (2015) 2524.CrossRefGoogle Scholar
  6. 6.
    Huang Y X, Wang Y B, Meng X C, Wan L, Cao J, Zhou L, and Feng J C, J Mater Process Technol 249 (2017) 331.CrossRefGoogle Scholar
  7. 7.
    Chen Y, Ding H, Li J Z, Cai Z H, Zhao J W, and Yang W J, Mater Sci Eng A 650 (2016) 281.CrossRefGoogle Scholar
  8. 8.
    Hyness N R J, and Velu P S, J Manuf Process 32 (2018) 288.CrossRefGoogle Scholar
  9. 9.
    Shen J J, Liu H J, and Cui F, Mater Des 31 (2010) 3937.CrossRefGoogle Scholar
  10. 10.
    Beygi R, Mehrizi M Z, Verdera D, and Loureiro A, J Mater Process Technol 255 (2018) 739.CrossRefGoogle Scholar
  11. 11.
    Wahid W A, Khan Z A, and Siddiquee A N, Trans Nonferrous Metals Soc 28 (2018) 193.CrossRefGoogle Scholar
  12. 12.
    Chen Y, Ding H, Cai Z H, Zhao J W, and Li J Z, Mater Sci Eng A 650 (2016) 396.CrossRefGoogle Scholar
  13. 13.
    Sabari S S, Malarvizhi S, and Balasubramanian V, J Mater Process Technol 237 (2016) 286.CrossRefGoogle Scholar
  14. 14.
    Fu R D, Sun Z Q, Sun R C, Li Y, Liu H J, and Liu L, Mater Des 32 (2011) 4825.CrossRefGoogle Scholar
  15. 15.
    Zhang Z, Xiao B L, and Ma Z Y, Mater Sci Eng A 614 (2014) 6.CrossRefGoogle Scholar
  16. 16.
    Sharma C, Dwivedi D K, and Kumar P, Mater Sci Eng A 556 (2012) 479.CrossRefGoogle Scholar
  17. 17.
    Chen Y, Ding H, Cai Z H, Zhao J W, and Li J Z, J Mater Eng Perform 26 (2017) 530.CrossRefGoogle Scholar
  18. 18.
    Chen Y, Jiang Y F, Ding H, Zhao J W, and Li J Z, Mater Sci Technol Lond 34 (2018) 153.CrossRefGoogle Scholar
  19. 19.
    Malopheyev S, Vysoyskiy I, Kulitskiy V, Mironov S, and Kaibyshev R, Mater Sci Eng A 662 (2016) 136.CrossRefGoogle Scholar
  20. 20.
    Trueba Jr L, Heredia G, Rybicki D, and Johannes L B, J Mater Process Technol 219 (2015) 271.CrossRefGoogle Scholar
  21. 21.
    Cho J H, Han S H, and Lee C G, Mater Lett 180 (2016) 157.CrossRefGoogle Scholar
  22. 22.
    Lin H Q, Wu Y L, Liu S D, and Zhou X R, Mater Charact 141 (2018) 74.CrossRefGoogle Scholar
  23. 23.
    Dong P, Sun D Q, and Li H M, Mater Sci Eng A 576 (2013) 29.CrossRefGoogle Scholar
  24. 24.
    Perez M, Dumont M, and Reyes D A, Acta Mater 56 (2008) 2119.CrossRefGoogle Scholar
  25. 25.
    Chen H Y, Fu L, and Liang P, J Alloys Compd 692 (2017) 155.CrossRefGoogle Scholar
  26. 26.
    Cai Z H, Li H Y, Jing S Y, Li Z C, Ding H, Tang Z Y, and Misra R D K, Mater Charact 137 (2018) 256.CrossRefGoogle Scholar
  27. 27.
    Azimzadegan T, and Serajzadeh S, J Mater Eng Perform 19 (2010) 1256.CrossRefGoogle Scholar
  28. 28.
    Su J Q, Nelson T W, and Sterling C J, Mater Sci Eng A 405 (2005) 277.CrossRefGoogle Scholar
  29. 29.
    Rao P N, Viswanadh B, and Jayaganthan R, Mater Sci Eng A 606 (2014) 1.CrossRefGoogle Scholar
  30. 30.
    Fu R D, Zhang J F, Li Y J, Kang J, Liu H J, and Zhang F C, Mater Sci Eng A 559 (2013) 319.CrossRefGoogle Scholar
  31. 31.
    Santiago F H, Hirata V M L, Munoz M L S, and Rosales H J D, Mater Charact 58 (2007) 303.CrossRefGoogle Scholar
  32. 32.
    Mandal D, and Baker I, Acta Mater 45 (1997) 453.CrossRefGoogle Scholar
  33. 33.
    Malopheyev S, Kulitskiy V, Mironov S, Zhemchuzhnikova D, and Kaibyshev R, Mater Sci Eng A 600 (2014) 159.CrossRefGoogle Scholar
  34. 34.
    Wen H M, Topping T D, Isheim D, Seidman D N, and Lavernia E J, Acta Mater 61 (2013) 2769.CrossRefGoogle Scholar
  35. 35.
    Feng X L, Liu H J, and Babu S S, Scr Mater 65 (2011) 1057.CrossRefGoogle Scholar
  36. 36.
    Ma K, Wen H M, Hu T, Topping T D, Isheim D, Seidman D N, Lavernia E J, and Schoenung J M, Acta Mater 62 (2014) 141.CrossRefGoogle Scholar
  37. 37.
    Fuller C B, Mahoney M W, Calabrese M, and Micona L, Mater Sci Eng A 527 (2010) 2233.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  • Yu Chen
    • 1
  • Yifu Jiang
    • 2
  • Fenghe Zhang
    • 1
  • Hua Ding
    • 2
  • Jingwei Zhao
    • 3
  • Zhaohui Ren
    • 1
  1. 1.School of Mechanical Engineering and AutomationNortheastern UniversityShenyangPeople’s Republic of China
  2. 2.School of Materials Science and EngineeringNortheastern UniversityShenyangPeople’s Republic of China
  3. 3.School of Mechanical, Materials, Mechatronic and Biomedical EngineeringUniversity of WollongongWollongongAustralia

Personalised recommendations