Advertisement

Transactions of the Indian Institute of Metals

, Volume 71, Issue 11, pp 2801–2806 | Cite as

Solidification Analysis of Mg–4Zn–xSr System to Study Phase Transformations in Mg-Rich Corner

  • Deepa B. Prabhu
  • C. Muthuraja
  • Jayakrishnan Nampoothiri
  • P. Gopalakrishnan
  • K. R. Ravi
Technical Paper
  • 15 Downloads

Abstract

Mg–Zn–Sr alloys are suitable for biodegradable orthopaedic implants due to excellent biocompatibility and bone regeneration effect of Sr. For Sr additions exceeding 0.2 wt%, ternary phases are observed in the microstructure contrary to binary MgxZny and Mg17Sr2 intermetallics predicted by the existing phase diagrams and corrosion and mechanical properties reduce drastically. Thermal analysis employed for Mg–4Zn–xSr alloys (0 ≤ x≤2) recorded two peaks, hitherto unreported, at temperatures of ~ 514 and 409 °C with 2 wt%, and ~ 549 and 428 °C with 1 wt% of Sr added to Mg–4Zn alloy. In conjunction with SEM–EDAX and XRD analysis, one of these phases is identified as Mg11Zn4Sr3, with second one an unknown intermetallic (IM2). Formation of Mg17Sr2 phase is suppressed in the presence of Zn, and the ternary phase is favoured beyond the solid solubility of Sr in Mg. Solidification pathway of L → α-Mg + Mg11Zn4Sr3 + unknown intermetallic (IM2) has been proposed for the ternary compositions with Sr > 0.2 wt% investigated in the current study.

Keywords

Magnesium Solidification behaviour Microstructural evolution Thermal analysis 

Notes

Acknowledgements

The authors acknowledge the funding for the work from Department of Science and Technology, Government of India [Project No. SR/WOS-A/ET-79/2013(G), dated 29.5.2014], and CSIR, India (Award No: 08/473(0006)/2015 EMR-1).

References

  1. 1.
    Bornapour M, Celikin M, Cerruti M, and Pekguleryuz M, Mater Sci Eng C 35 (2014) 267.  https://doi.org/10.1016/j.msec.2013.11.011.CrossRefGoogle Scholar
  2. 2.
    Han J, Wan P, Ge Y, Fan X, Tan L, Li J, and Yang K, Mater Sci Eng C 58 (2016) 799.  https://doi.org/10.1016/j.msec.2015.09.057.CrossRefGoogle Scholar
  3. 3.
    Cipriano A F, Zhao T, Johnson I, Guan RG, Garcia S, and Liu H, J Mater Sci Mater Med 24 (2013) 989.  https://doi.org/10.1007/s10856-013-4853-1.CrossRefGoogle Scholar
  4. 4.
    Mushahary D, Sravanthi R, Li Y, Kumar MJ, Harishankar N, Hodgson P D, Wen C, and Pande G, Int J Nanomed 8 (2013) 2887.  https://doi.org/10.2147/ijn.s47378.CrossRefGoogle Scholar
  5. 5.
    Marie P J, Ammann P, Boivin G, and Rey C, Calcif Tissue Int 69 (2001) 121.  https://doi.org/10.1007/s002230010055.CrossRefGoogle Scholar
  6. 6.
    Lin X, Yang X, Tan L, Li M, Wang X, Zhang Y, Yang K, Hu Z, and Qiu J, Appl Surf Sci 288 (2014) 718.  https://doi.org/10.1016/j.apsusc.2013.10.113.CrossRefGoogle Scholar
  7. 7.
    Liu L, Li N, Lei T, Li K, and Zhang Y, Med Sci Monit 20 (2014) 1056.  https://doi.org/10.12659/msm.890638.CrossRefGoogle Scholar
  8. 8.
    Mezbahul-Islam M, Mostafa A O, and Medraj M, J Mater 2014 (2014) 1.  https://doi.org/10.1155/2014/704283.CrossRefGoogle Scholar
  9. 9.
    Aljarrah M, and Medraj M, Calphad 32 (2008) 240.  https://doi.org/10.1016/j.calphad.2007.09.001.CrossRefGoogle Scholar
  10. 10.
    Nayeb-Hashemi A A, and Clark J B, Bull Alloy Phase Diagr 7 (1986) 149.CrossRefGoogle Scholar
  11. 11.
    Chen L, Bin Y, Zou W, Wang X, and Li W, J Mech Behav Biomed Mater 66 (2017) 187.  https://doi.org/10.1016/j.jmbbm.2016.11.014.CrossRefGoogle Scholar
  12. 12.
    Ding Y, Li Y, Lin J, and Wen C, J Mater Chem B 3 (2015) 3714.  https://doi.org/10.1039/c5tb00433k.CrossRefGoogle Scholar
  13. 13.
    Aljarrah M, Aghaulor U, and Medraj M, Intermetallics 15 (2007) 93.  https://doi.org/10.1016/j.intermet.2006.03.011.CrossRefGoogle Scholar
  14. 14.
    Wang J, Zhang Y-N, Hudon P, Chartrand P, Jung I-H, and Medraj M, J Mater Sci 50 (2015) 7636.  https://doi.org/10.1007/s10853-015-9326-0.CrossRefGoogle Scholar
  15. 15.
    Wang J, Zhang Y N, Hudon P, Jung I H, Chartrand P, and Medraj M, Mater Des 86 (2015) 305.  https://doi.org/10.1016/j.matdes.2015.07.038.CrossRefGoogle Scholar
  16. 16.
    Cheng M, Chen J, Yan H, Su B, Yu Z, Xia W, and Gong X, J Alloys Compd 691 (2017) 95.  https://doi.org/10.1016/j.jallcom.2016.08.164.CrossRefGoogle Scholar
  17. 17.
    Muthuraja C, Akalya A, Ahmed R R, Nampoothiri J, Balasundar I, and Ravi K R, J Alloys Compd 695 (2017) 3559.  https://doi.org/10.1016/j.jallcom.2016.11.413.CrossRefGoogle Scholar
  18. 18.
    Brar H S, Wong J, and Manuel M V, J Mech Behav Biomed Mater 7 (2012) 87.  https://doi.org/10.1016/j.jmbbm.2011.07.018.CrossRefGoogle Scholar
  19. 19.
    Guan R G, Cipriano A F, Zhao Z Y, Lock J, Tie D, Zhao T, Cui T, and Liu H, Mater Sci Eng C 33 (2013) 3661.  https://doi.org/10.1016/j.msec.2013.04.054.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  • Deepa B. Prabhu
    • 1
    • 2
  • C. Muthuraja
    • 1
    • 2
  • Jayakrishnan Nampoothiri
    • 1
    • 2
  • P. Gopalakrishnan
    • 2
  • K. R. Ravi
    • 1
    • 2
  1. 1.Structural Nanomaterials LaboratoryPSG Institute of Advanced StudiesCoimbatoreIndia
  2. 2.Department of Metallurgical EngineeringPSG College of TechnologyCoimbatoreIndia

Personalised recommendations