Advertisement

Transactions of the Indian Institute of Metals

, Volume 71, Issue 11, pp 2771–2775 | Cite as

Prediction and Verification of Effective Grain Refiners for Magnesium Alloys

  • Payam Emadi
  • Eli Vandersluis
  • Comondore Ravindran
Technical Paper
  • 47 Downloads

Abstract

Magnesium alloys are important lightweight materials, enabling improved fuel efficiency and reduced emissions in automotive and aerospace industries. Heterogeneous nucleation and effective grain growth restriction during the solidification of these alloys result in enhanced mechanical properties. These can be achieved via the addition of suitable inoculants to the alloy, yet the selection of a potent grain refiner is often challenging and is, therefore, the subject of much research. Mathematical models can be used for the identification and development of effective refiners, subject to appropriate validation. This study examines the grain-refining efficiency of innovative magnesium inoculants via lattice disregistry calculations and presents experimental verification for the models in permanent mould castings.

Keywords

Magnesium Grain Refinement Casting Crystallography 

References

  1. 1.
    Luo A, Int Mater Rev 49 (2004) 13.CrossRefGoogle Scholar
  2. 2.
    Shia B, Chena R, and Kea W, J Magnes Alloys 1 (2013) 210.CrossRefGoogle Scholar
  3. 3.
    Doheim M, Omran A, Abdel-Gwad A, and Sayed G, Metall Mater Trans A 42 (2011) 2862.CrossRefGoogle Scholar
  4. 4.
    Wang X, Liu Z, Dai W, and Han Q, Metall Mater Trans B 46 (2015) 1620.CrossRefGoogle Scholar
  5. 5.
    Ding W, Xia T, and Zhao W, Mater Open Access J Mater Sci 7 (2014) 3663.Google Scholar
  6. 6.
    Suresh M, Srinivasan A, Ravi K, Pillai U T S, and Pai B, Mater Sci Eng A 525 (2009) 207.CrossRefGoogle Scholar
  7. 7.
    StJohn D, Ma Q, Easton M, Cao P, and Hildebrand Z, Metall Mater Trans 36 (2005) 1669.CrossRefGoogle Scholar
  8. 8.
    Hildebrand Z, Qian M, StJohn D, and Frost M, Magnes Technol 2004, TMS, Warrendale (2004).Google Scholar
  9. 9.
    Qian M, and Das A, Scr Mater 54 (2006) 881.CrossRefGoogle Scholar
  10. 10.
    Kabirian F, and Mahmudi R, Adv Eng Mater 11 (2009) 189.CrossRefGoogle Scholar
  11. 11.
    Turnbull D, and Vonnegut B, Ind En. Chem 44 (1952) 1292.CrossRefGoogle Scholar
  12. 12.
    Bramfitt B, Metall Trans 1 (1970) 1987.CrossRefGoogle Scholar
  13. 13.
    Avedesian M, and Baker H, Magnesium and Magnesium Alloys, ASM International, Materials Park (1999), p 7.Google Scholar
  14. 14.
    Cai Y, Taplin D, Tan M, and Zhou W, Scr Mater 41 (1999) 967.CrossRefGoogle Scholar
  15. 15.
    Li C, Liu X, and Zhang G, Mater Sci Eng A 497 (2008) 432.CrossRefGoogle Scholar
  16. 16.
    Zhou Y, and Sun Z, Mater Res Innov 3 (2000) 286.CrossRefGoogle Scholar
  17. 17.
    Chen T, Jiang X, Ma Y, Li Y, and Hao Y, J Alloys Compd 496 (2010) 218.CrossRefGoogle Scholar
  18. 18.
    Guo Y, Zhang M, and Jin Y, J Wuhan Univ Technol Mater Sci Edit 29 (2013) 154.CrossRefGoogle Scholar
  19. 19.
    Xiuqing Z, Lihua L, Naiheng M, and Haowei W, Mater Chem Phys 96 (2006) 9.CrossRefGoogle Scholar
  20. 20.
    Rino J J, Prabu S B, and Paskaramoorthy R, Mater Today Proc 4 (2017) 8739.CrossRefGoogle Scholar
  21. 21.
    Tjong S, and Wang G, Adv Eng Mater 6 (2004) 964.CrossRefGoogle Scholar
  22. 22.
    Cao P, Qian M, and StJohn D, Scr Mater 54 (2006) 1853.CrossRefGoogle Scholar
  23. 23.
    Elsayed A, Ravindran C, and Murty B S, Int J Metalcast 5 (2011) 29.CrossRefGoogle Scholar
  24. 24.
    Suresh M, Srinivasan A, Pillai U T S, and Pai B, Mater Sci Forum 710 (2012) 161.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  • Payam Emadi
    • 1
  • Eli Vandersluis
    • 1
  • Comondore Ravindran
    • 1
  1. 1.Centre for Near-Net-Shape Processing of MaterialsRyerson UniversityTorontoCanada

Personalised recommendations