Advertisement

Transactions of the Indian Institute of Metals

, Volume 71, Issue 11, pp 2617–2622 | Cite as

Simulation of Intermetallic Solidification Using Phase-Field Techniques

  • A. M. Mullis
  • P. C. Bollada
  • P. K. Jimack
Technical Paper
  • 39 Downloads

Abstract

We have presented current ideas towards developing a phase-field model appropriate to the solidification of intermetallic phases. Such simulation presents two main challenges (1) dealing with faceted interfaces and (2) the complex sublattice models used to describe the thermodynamics of such phases. Although models already exist for the simulation of faceted crystals, some of these can be shown to produce highly unrealistic Wulff shapes. The model present here uses a parameterisation of the Wulff shape as a direct input to the model, allowing the simulation of arbitrary crystal shapes. In addition, an anti-trapping current that can be used with arbitrary (including sublattice) thermodynamics is presented. Such anti-trapping currents are vital in the simulation of intermetallic phases where the steep liquidus slope means small deviations in solute partitioning behaviour leading to a significant change in tip undercooling.

Keywords

Intermetallic compounds Solute trapping Faceted crystals Thermodynamics 

Notes

Acknowledgements

This research was funded by EPSRC Innovative Manufacturing Research Hub in Liquid Metal Engineering (LiME), Grant No. EP/N007638/1.

References

  1. 1.
    SGTE - Scientific Group Thermodata Europe, see www.sgte.net/en/about-sgte.
  2. 2.
    Choudhury A, Kellner M, and Nestler B, Curr Opin Solid State Mater Sci 19 (2015) 287.CrossRefGoogle Scholar
  3. 3.
    Ohno M, Takaki T, and Shibuta Y, Phys Rev E 96 (2017) 33311.CrossRefGoogle Scholar
  4. 4.
    Taylor J E, and Cahn J W, Physica D 112 (1998) 381.CrossRefGoogle Scholar
  5. 5.
    Eggleston J J, McFadden G B, and Voorhees P W, Physica D 150 (2001) 91.CrossRefGoogle Scholar
  6. 6.
    Debierre J-M, Karma A, Celestini F, and Guerin R, Phys Rev E 68 (2003) 041604.CrossRefGoogle Scholar
  7. 7.
    Choi J, Park S-K, Hwang H-Y, and Huh J-Y, Acta Mater 84 (2015) 55.CrossRefGoogle Scholar
  8. 8.
    Abinandanan T A, and Haider F, Philos Mag A 81 (2001) 2457.CrossRefGoogle Scholar
  9. 9.
    Nani E S, and Gururajan M P, Philos Mag 94 (2014) 3331.CrossRefGoogle Scholar
  10. 10.
    Karma A, Phys Rev Lett 87 (2001) 115701.CrossRefGoogle Scholar
  11. 11.
    Galenko P K, Abramova E V, Jou D, Danilov D A, Lebedev V G, and Herlack D M, Phys Rev E 84 (2011) 041143.CrossRefGoogle Scholar
  12. 12.
    Mullis A M, Int. J. Heat Mass Transf 40 (1997) 4085.CrossRefGoogle Scholar
  13. 13.
    Zhang L, Danilova E V, Steinbach I, Medvedev D, and Galenko, P K, Acta Mater 61 (2013) 4155.CrossRefGoogle Scholar
  14. 14.
    Bollada P C, Jimack P K, and Mullis A M, Comput Mater Sci 126 (2016) 426.CrossRefGoogle Scholar
  15. 15.
    Bollada P C, Goodyer C E, Jimack P K, Mullis A M, and Yang F W, J Comput Phys 287 (2015) 130.CrossRefGoogle Scholar
  16. 16.
    Brandt A, Math Comput 31 (1977) 333.CrossRefGoogle Scholar
  17. 17.
    MacNeice P, Olson K M, Mobarry C, de Fainchtein R, and Packer C, Comput Phys Commun 126 (2000) 330.CrossRefGoogle Scholar
  18. 18.
    Redlich O, and Kister A, Ind Eng Chem 40 (1948) 345.CrossRefGoogle Scholar
  19. 19.
    Lengsdorf R, Holland-Moritz D, and Herlach D M, Acta Mater 62 (2009) 365.Google Scholar
  20. 20.
    Bollada P C, Jimack P K, and Mullis A M, Comput Mater Sci 151 (2018) 338.CrossRefGoogle Scholar
  21. 21.
    Bollada P C, Jimack P K, and Mullis A M, Comput Mater Sci 144 (2018) 76.CrossRefGoogle Scholar
  22. 22.
    Liu R B, Herlach D M, Vandyiousse M, and Greer A L, Metal Mat Trans A 35 (2003) 1067.CrossRefGoogle Scholar
  23. 23.
    Battersby S E, Cochrane R F, and Mullis A M, Mater Sci Eng A 226 (1997) 443.CrossRefGoogle Scholar
  24. 24.
    Battersby S E, Cochrane R F, and Mullis A M, J Mater Sci 34 (1999) 2049.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  1. 1.School of Chemical and Process EngineeringUniversity of LeedsLeedsUK
  2. 2.School of ComputingUniversity of LeedsLeedsUK

Personalised recommendations