Transactions of the Indian Institute of Metals

, Volume 71, Issue 11, pp 2807–2811 | Cite as

Determination of Liquid Fraction in Mg–Zn–Y Alloys: Thermal Analysis Versus Thermodynamic Approach

  • C. MuthurajaEmail author
  • I. Balasundar
  • K. R. Ravi
Technical Paper


In the present study, the liquid fraction of Mg–2Zn–xY (x: 2, 4, 6) alloys as a function of temperature was determined experimentally using thermal analysis and compared with the thermodynamically calculated results. Thermodynamic calculations were made using equilibrium and Scheil solidification model in the Thermo-Calc (TCMG1 thermodynamic database). Thermodynamically calculated phases and their formation temperature for Mg–Zn–Y alloy system were found to be significantly different from the thermal analysis results. This resulted in large difference between the thermal analysis and thermodynamically calculated solidification range and eutectic knee point values. Hot-tearing-resistant alloy predicted by the thermal analysis method alone matched with the results reported in the literature.


Mg–Zn–Y alloy Liquid fraction CALPHAD Thermal analysis 


  1. 1.
    Shao X H, Yang Z Q, and Ma X L, Acta Mater 58 (2010) 4760.CrossRefGoogle Scholar
  2. 2.
    Singh A, Nakamura M, Watanabe M, Kato A, and Tsai A P, Scr Mater 49 (2003) 417.CrossRefGoogle Scholar
  3. 3.
    Brollo G, Proni C, Paula L, and Zoqui E, Therm Acta 651 (2017) 22.CrossRefGoogle Scholar
  4. 4.
    Tzimas E, and Zavaliangos A, J Mater Sci 35 (2000) 5319.CrossRefGoogle Scholar
  5. 5.
    Muthuraja C, Akalya A, Ahmed R, Jayakrishnan N, Balasundar I, and Ravi K R, J Alloys Compd 695 (2017) 3559.CrossRefGoogle Scholar
  6. 6.
    Huang Z H, Liang S M, Chena R S, and Hana E H, J Alloys Compd 468 (2009) 170.CrossRefGoogle Scholar
  7. 7.
    Padezhnova E M, Melnik E V, Miliyevskiy R A, Dobatkina T V, and Kinzhibalo V V, Russ Metall (Metally) 4 (1982) 185.Google Scholar
  8. 8.
    Liang S M, Chena R S, Blandin J J, Suery M, and Hana E H, Mater Sci Eng A 480 (2008) 365.CrossRefGoogle Scholar
  9. 9.
    Wotczyriski W, Krajewski W, Ebner R, and Kloch J, CALPHAD 25 (2001) 401.CrossRefGoogle Scholar
  10. 10.
    Liu D, Atkinson H V, and Jones H, Acta Mater 53 (2005) 3807.CrossRefGoogle Scholar
  11. 11.
    Shao G, Varsani V, and Fan Z, CALPHAD 30 (2006) 286.CrossRefGoogle Scholar
  12. 12.
    Grobner J, Kozlov A, Fang X Y, Geng J, Nie J F, and Fetzer R S, Acta Mater 60 (2012) 5948.CrossRefGoogle Scholar
  13. 13.
    Wang Z, Huang Y, Srinivasan A, Liu Z, Beckmann F, Kainer K U, and Hort N, Mater Des 47 (2013) 90.CrossRefGoogle Scholar
  14. 14.
    Song J, Pan F, Jiang B, Atrens A, Zhang M X, and Lu Y, J Mag Alloys 4 (2016) 151.CrossRefGoogle Scholar
  15. 15.
    Clyne T W, and Davies G J, Br Foundryman 68 (1975) 238.Google Scholar
  16. 16.
    Djurdjevic M B, and Schmid-Fetzer R, Mater Sci Eng A 417 (2006) 24.CrossRefGoogle Scholar
  17. 17.
    Gunde P, Schiffl A, and Uggowitzer P J, Mater Sci Eng A 527 (2010) 7074.CrossRefGoogle Scholar
  18. 18.
    Liu Z, Zhang S, Mao P, and Wang F, Trans Nonferrous Met Soc China 24 (2014) 907.CrossRefGoogle Scholar
  19. 19.
    Ravi K R, Trans Indian Inst Met 68 (2015) 1081. Scholar
  20. 20.
    Liang S, Chen R, and Han E, Int J Met Res 101 (2010) 256.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  1. 1.PSG Institute of Advanced StudiesCoimbatoreIndia
  2. 2.Near Net Shape Group, Aeronautical Materials DivisionDefence Metallurgical Research LaboratoryHyderabadIndia
  3. 3.Department of Metallurgical EngineeringPSG College of TechnologyCoimbatoreIndia

Personalised recommendations