Transactions of the Indian Institute of Metals

, Volume 71, Issue 11, pp 2839–2843 | Cite as

Applicability of γ* Parameter on Glass Forming Ability of Zr-,Ti-,Hf-(Cu–Ni)-based Metallic Glasses

  • Anuj Khond
  • Jatin Bhatt
  • Ajeet K. Srivastav
Technical Paper


Bulk metallic glasses are considered as potential materials for engineering application due to the absence of long-range periodicity. The ability of material to be cast into amorphous phase is defined by the term called glass forming ability (GFA). In the present paper, GFA of Zr-, Hf- and Ti-based metallic glass have been studied based on well-established γ* parameter. The γ* parameter has been calculated for reported binary, ternary, quaternary and quinary Zr-, Hf- and Ti-based systems. The γ* parameter increases with Zr, Hf and Ti content in Zr–Cu–Ni, Hf–Cu–Ni and Ti–Cu–Ni systems validating the confidence of parameter. These findings are well matched with existing literature in which 50–60 at.% Zr, Hf and Ti form amorphous phase in Zr–Cu–Ni, Hf–Cu–Ni and Ti–Cu–Ni systems, respectively. Hence, applicability of γ* parameter has been discussed in context to Zr-, Hf-, and Ti-based systems. The result shows that γ* is an effective thermodynamic parameter to define the GFA in binary, ternary, quaternary and quinary Zr-, Hf- and Ti-based systems.


Bulk metallic glass Glass forming ability Hf-based glass γ* parameter 



The author would like to express his gratitude toward Mr. Akash Deshmukh, X-ray Research Laboratory, Department of Physics, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, for his valuable discussion.


  1. 1.
    Nagendra N, Ramamurty U, Goh T T, and Li Y, Acta Mater 48 (2000) 2603.CrossRefGoogle Scholar
  2. 2.
    Johnson W L, Curr Opin Solid State Mater Sci 1 (1996) 383.CrossRefGoogle Scholar
  3. 3.
    Suryanarayana C, and Inoue A, Bulk Metallic Glasses, CRC Press, Boca Raton (2001).Google Scholar
  4. 4.
    Lu Z P, and Liu C T, Acta Mater 50 (2002) 3501.CrossRefGoogle Scholar
  5. 5.
    Chen H S, and Park B K, Acta Metall 21 (1973) 395.CrossRefGoogle Scholar
  6. 6.
    Lu Z P, and Liu C T, Phys Rev Lett 91 (2003) 115505/1.Google Scholar
  7. 7.
    Inoue A, Zhang W, Zhang T, and Kurosaka K, J Mater Res 16 (2001) 2836.CrossRefGoogle Scholar
  8. 8.
    Johnson W L, MRS Bull 24 (1999) 42.CrossRefGoogle Scholar
  9. 9.
    Vincent S, Peshwe D R, Murty B S, and Bhatt J, J Non Cryst Solids 357 (2011) 3495.CrossRefGoogle Scholar
  10. 10.
    Xia L, Fang S, Wang Q, Dong Y D, Liu C T, Xia L, Fang S S, Wang Q, and Dong Y D, Appl Phys Lett 88 (2006) 171905/1.Google Scholar
  11. 11.
    Niessen A K, de Boer F R, Boom R, de Chatel P F, Mattens W C M, and Miedema A R, Calphad 7 (1983) 51.CrossRefGoogle Scholar
  12. 12.
    Deshmukh A A, Khond A A, and Palikundwar U A, J Non-Cryst Solids 477 (2017) 50.CrossRefGoogle Scholar
  13. 13.
    Delamare J, Lemarchand D, and Vigier P, J Alloys Compd 216 (1994) 273.CrossRefGoogle Scholar
  14. 14.
    Zhang T, Inoue A, and Masumoto T, Mater Sci Eng A 182 (1994) 1423.CrossRefGoogle Scholar
  15. 15.
    Duan G, Wiest A, Lind M L, Kahl A, and Johnson W L, Scr Mater 58 (2008) 465.CrossRefGoogle Scholar
  16. 16.
    Zhang L, Ma E, and Xu J, Intermetallics 16 (2008) 584.CrossRefGoogle Scholar
  17. 17.
    Satish Idury K S N, Murty B S, and Bhatt J, Intermetallics 65 (2015) 42.CrossRefGoogle Scholar
  18. 18.
    Xing L-Q, Li Y, Ramesh K T, Li J, and Hufnagel T C, Phys Rev B. 64 (2001) 180201/1.Google Scholar
  19. 19.
    Yang Y J, Jin Z S, Ma X Z, Zhang Z P, Zhong H, Ma M Z, Zhang X Y, Li G, and Liu R P, J Alloys Compd 750 (2018) 757.CrossRefGoogle Scholar
  20. 20.
    Wang H, Gao Y, Ye Y, Min G, Chen Y, and Teng X, J Alloys Compd 353 (2003) 200.CrossRefGoogle Scholar
  21. 21.
    Glade S C, Busch R, Lee D S, Johnson W L, Wunderlich R K, Fecht H J, J Appl phys 87 (2000) 7242.CrossRefGoogle Scholar
  22. 22.
    Deo L P, Mendes M A B, Costa A M S, Campos Neto N D, and De Oliveira M F, J Alloys Compd 553 (2013) 212.CrossRefGoogle Scholar
  23. 23.
    Gargarella P, Pauly S, Song K .K, Hu J, Barekar N S, Samadi Khoshkhoo M, Teresiak A, Wendrock H, Kühn U, Ruffing C, Kerscher E, and Eckert J, Acta Mater 61 (2013) 151.CrossRefGoogle Scholar
  24. 24.
    Cai A H, Chen H, An W K, Tan J Y, and Zhou Y, Mater Sci Eng A 457 (2007) 6.CrossRefGoogle Scholar
  25. 25.
    Cai A H, Chen H, An W K, Tan J Y, Zhou Y, Pan Y, and Sun G X, J Non-Cryst Solids 354 (2008) 1808.CrossRefGoogle Scholar
  26. 26.
    Gargarella P, Pauly S, Stoica M, Vaughan G, Afonso C R M, Kuhn U, and Eckert J, APL Mater 3 (2015) 16101/1.Google Scholar
  27. 27.
    Chen W, Wang Y, Qiang J, and Dong C, Acta Mater 51 (2003) 1899.CrossRefGoogle Scholar
  28. 28.
    Vaillant M L, Keryvin V, Rouxel T, and Kawamura Y, Scr Mater 47 (2002) 19.CrossRefGoogle Scholar
  29. 29.
    Tang M-B, Zhao D-Q, Pan M-X, and Wang W-H, Chin Phys Lett 21 (2004) 901.CrossRefGoogle Scholar
  30. 30.
    Li C, Ranganathan S, and Inoue A, Acta Mater 49 (2001) 1903.CrossRefGoogle Scholar
  31. 31.
    Revesz A, Uriarte J L, Louzguine D, Inoue A, Surinach S, Baró M D, and Yavari A R, Mater Sci Eng A 375377 (2004) 381.CrossRefGoogle Scholar
  32. 32.
    Li P, Wang G, Ding D, and Shen J, Mater Des 53 (2014) 145.CrossRefGoogle Scholar
  33. 33.
    Yu C Y, Liu X J, Lu J, Zheng G P, and Liu C T, Sci Rep 3 (2013) 1.Google Scholar
  34. 34.
    de Tendler R H, Soriano M R, Pepe M E, Kovacs J A, Vicente E E, and Alonso J A, Intermetallics 14 (2006) 297.CrossRefGoogle Scholar
  35. 35.
    Wang Y Y, Wang Q, Li J, and Liu B X, RSC Adv 6 (2016) 21802.CrossRefGoogle Scholar
  36. 36.
    Khond A, Babu D A, Smaran S, Deshmukh A, Majumdar B, Bhatt J, and Srivastav A K, J Non-Cryst Solids (2018). Scholar
  37. 37.
    Baker H, ASM Handbook: Volume 3, Alloy and Phase Diagram, ASM International, Materials Park (1992).Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringV.N.I.T. NagpurNagpurIndia

Personalised recommendations