Transactions of the Indian Institute of Metals

, Volume 71, Issue 11, pp 2765–2769 | Cite as

4D Nano-Tomography for Fundamental Studies in Solidification of Aluminium-Based Alloys

  • R. DaudinEmail author
  • J. Villanova
  • P. Lhuissier
  • S. Terzi
  • R. Kumar
  • R. Tucoulou
  • L. Salvo
Technical Paper


This paper describes some experimental results obtained thanks to the development carried out at the ESRF-ID16b beamline (European Synchrotron Research Facility, Grenoble, France) to make available a dedicated set-up achieving an unprecedented combination of spatial resolution and scan time. The study of the solidification of an Al-based alloy containing Y2O3 particles reveals several key features where very fine spatial resolution is mandatory to fully grasp the underlying fundamental mechanisms at play during solid growth. This concerns the behaviour of the ceramic particles inside the melt and their interactions with the growing solid phase during the casting of such metal matrix nano-composites. It also brings new stimulating insights on the origin of the porosities which are often encountered but undesirable in such alloys.


In situ nano-tomography Solidification Al-based nano-composites Porosity 


  1. 1.
    Salvo L, Di Michiel M, Scheel M, Lhuissier P, Mireux B, and Suéry M, Mater. Sci. Forum 706709 1713 (2012).CrossRefGoogle Scholar
  2. 2.
    Nguyen-Thi H, Salvo L, Mathiesen R H, Arnberg R H, Billia B, Suery M, and Reinhart G, Comptes Rendus Phys. 13 237 (2012).Google Scholar
  3. 3.
    Villanova J, Daudin R, Lhuissier P, Jauffrès D, Lou S, Martin C L, Labouré S, Tucoulou R, Martínez-Criado G, and Salvo L, Mater. Today 20 354 (2017).CrossRefGoogle Scholar
  4. 4.
    Campbell J, Complete Casting Handbook: Metal Casting Processes, Metallurgy, Techniques and Design, Butterworth-Heinemann, Oxford (2015).CrossRefGoogle Scholar
  5. 5.
    Felberbaum M, and Rappaz M, Acta Mater. 59 6849 (2011).CrossRefGoogle Scholar
  6. 6.
    Meidani H, Jacot A, and Rappaz M, Metall. Mater. Trans. A 46 23 (2015).CrossRefGoogle Scholar
  7. 7.
    Gupta C, Toda H, Fujioka T, Kobayashi M, Uesugi K, Takeuchi A, and Y Suzuki Appl. Phys. Lett. 103 171902 (2013).CrossRefGoogle Scholar
  8. 8.
    Bouaeshi W B, and Li D Y, Tribol. Int. 40 188 (2007).CrossRefGoogle Scholar
  9. 9.
    Ahmadi H, and Nouri M, J. Mater. Sci. 45 3426 (2010).CrossRefGoogle Scholar
  10. 10.
    Hua G, Ahmadi H, Nouri M, and Li D, Mater. Chem. Phys. 149150 140 (2015).CrossRefGoogle Scholar
  11. 11.
    Sillekens W H, Jarvis D J, Vorozhtsov A, Bojarevics V, Badini C F, Pavese M, Terzi S, Salvo L, Katsarou L, and Dieringa H, Metall. Mater. Trans. A 45 3349 (2014).CrossRefGoogle Scholar
  12. 12.
    Ceschini L, Dahle A, Gupta M, Jarfors A E W, Jayalakshmi S, Morri A, Rotundo F, Toschi S, and Singh R A, Casting Routes for the Production of Al and Mg Based Nanocomposites, Springer Singapore, Singapore, (2017), p 41.Google Scholar
  13. 13.
    Youssef Y M, Dashwood R J, and Lee P D, Compos. Part Appl. Sci. Manuf. 36 747 (2005).CrossRefGoogle Scholar
  14. 14.
    Daudin R, Terzi S, Lhuissier P, Tamayo J, Scheel M, Babu N H, Eskin D G, and Salvo L, Acta Mater. 125 303 (2017).CrossRefGoogle Scholar
  15. 15.
    Daudin R, Terzi S, Lhuissier P, Salvo L, and Boller E, Mater. Des. 87 313 (2015).CrossRefGoogle Scholar
  16. 16.
    Eskin D G, Madam S K V, Tamayo J, Vorozhtsov S A, Babu N H, and Vorozhtsov A B, Application of External Fields to the Development of Aluminum-Based Nanocomposite and Master Alloys, Springer International Publishing, Springer, (2016) p 19.Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  1. 1.University of Grenoble Alpes, CNRS, SIMaPGrenobleFrance
  2. 2.ESRF The European SynchrotronGrenobleFrance
  3. 3.NOVITOMGrenobleFrance

Personalised recommendations