Transactions of the Indian Institute of Metals

, Volume 71, Issue 11, pp 2717–2723 | Cite as

Nano-/Ultrafine Eutectic in CoCrFeNi(Nb/Ta) High-Entropy Alloys

  • Barnasree Chanda
  • Abhilash Verma
  • Jayanta DasEmail author
Technical Paper


The development of single-phase high-entropy alloys (HEAs) emerges as a new paradigm shift in material research society during the last decade. A strong rise in the demand for structural and functional applications leads to the design and fabrication of super-strong eutectic HEAs through solidification processing. We report on the evolution of eutectic microstructure in CoCrFeNiNb0.5 and CoCrFeNiTa0.4 HEAs synthesized by arc melting. The evolved microstructure consists of nanolamellae of FCC γ-Ni and hexagonal β (Fe2Nb or Co2Ta type) Laves phases of 150 nm lamellae thickness. These alloys exhibit high yield strength of 2 GPa, ultimate compressive strength up to 2.2 GPa and 20% plastic strain. The strain rate jump test and transmission electron microscopic studies of deformed specimens have been performed to explore the microscopic mechanism of deformation in these high-strength advanced eutectic alloys.


High-entropy alloys Eutectic Strain rate sensitivity Mechanical properties Deformation mechanism 



The authors acknowledge the technical support provided by M. Das, S. Maity and R. Kundu. The funding provided by SRIC (SGIRG) IIT Kharagpur and Naval Research Board (NRB/4003/PG/357), Government of India are gratefully acknowledged.


  1. 1.
    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, and Chang S Y, Adv Eng Mater 6 (2004) 299.CrossRefGoogle Scholar
  2. 2.
    Cantor B, Chang I T H, Knight P, and Vincent A J B, Mater Sci Eng 375 (2004) 213.CrossRefGoogle Scholar
  3. 3.
    Murty B S, Yeh J W, and Ranganathan S, High entropy Alloys, Butterworth-Heinemann, Oxford (2014).CrossRefGoogle Scholar
  4. 4.
    Hsu C Y, Yeh J W, Chen S K, and Shun T T, Metall Mater Trans A 35 (2004) 1465.CrossRefGoogle Scholar
  5. 5.
    Sriharitha R, Murty B S, and Kottada R S, Intermetallics 32 (2013) 119.CrossRefGoogle Scholar
  6. 6.
    Liu W H, He J Y, Huang H L, Wang H, Lu Z P, and Liu C T, Intermetallics 60 (2015) 1.CrossRefGoogle Scholar
  7. 7.
    Agarwal R, Sonkusare R, Jha S R, Gurao N P, Biswas K and Nayan N, Mater Des 157 (2018) 539.CrossRefGoogle Scholar
  8. 8.
    Wang Y P, Li B S, and Fu H Z, Adv Eng Mater 11 (2009) 641.CrossRefGoogle Scholar
  9. 9.
    Ma S G, and Zhang Y, Mater Sci Eng A 532 (2012) 480.CrossRefGoogle Scholar
  10. 10.
    Chen M R, Lin S J, Yeh J W, Chuang M H, Chen S K, and Huang Y S, Metall Mater Trans A 37 (2006) 1363.CrossRefGoogle Scholar
  11. 11.
    Zhou Y J, Zhang Y, Wang Y L, and Chen G L, Appl Phys Lett 90 (2007) 181904.CrossRefGoogle Scholar
  12. 12.
    Chen Y Y, Hong U T, Shih H C, Yeh J W, and Duval T, Corros Sci 47 (2005) 2679.CrossRefGoogle Scholar
  13. 13.
    Tong C J, Chen Y L, Yeh J W, Lin S J, Chen S K, Shun T T, Tsau C H, and Chang S Y, Metall Mater Trans A 36 (2005) 881.CrossRefGoogle Scholar
  14. 14.
    Biswas K, and Gurao N P, Mater Sci Eng A 657 (2016) 224.CrossRefGoogle Scholar
  15. 15.
    Zhang Y, Zuo T T, Tang Z, Gao M C, Dahmen K A, Liaw P K, and Lu Z P, Prog Mater Sci 61 (2014) 1.CrossRefGoogle Scholar
  16. 16.
    Huang Y S, Chen L, Lui H W, Cai M H, and Yeh J W, Mater Sci Eng A 457 (2007) 77.CrossRefGoogle Scholar
  17. 17.
    Lu Y, Dong Y, Guo S, Jiang L, Kang H, Wang T, Wen B, Wang Z, Jie J, Cao Z, and Ruan H, Sci Rep 4 (2014) 1.Google Scholar
  18. 18.
    Jiang H, Zhang H, Huang T, Lu Y, Wang T, and Li T, Mater Des 109 (2016) 539.CrossRefGoogle Scholar
  19. 19.
    Chanda B, and Das J, Adv Eng Mater 20 (2018) 1700908.CrossRefGoogle Scholar
  20. 20.
    Guo S, Ng C, and Liu C T, Mater Res Lett 1 (2013) 228.CrossRefGoogle Scholar
  21. 21.
    Mishra A K, Samal S, and Biswas K, Trans Indian Inst Met 65 (2012) 725.CrossRefGoogle Scholar
  22. 22.
    Standard ASTM G129-00, Standard practice for slow strain rate testing to evaluate the susceptibility of metallic materials to environmentally assisted cracking, ASTM International, Conshohocken (2013).Google Scholar
  23. 23.
    Young R A, Introduction to Rietveld Method, Oxford University Press, Oxford, UK (1993).Google Scholar
  24. 24.
    Taylor G, Prog Mater Sci 36 (1992) 29.CrossRefGoogle Scholar
  25. 25.
    Wei Q, Cheng S, Ramesh K T, and Ma E, Mater Sci Eng A 381(2004) 71.CrossRefGoogle Scholar
  26. 26.
    Elmustafa A A, and Stone D S, J Mech Phys Solids 51 (2003) 357.CrossRefGoogle Scholar
  27. 27.
    Ganji R S, Karthik P S, Rao K B S, and Rajulapati K V, Acta Mater 125 (2017) 58.CrossRefGoogle Scholar
  28. 28.
    Das, J, Maity, T. and Singh, A, Trans Indian Inst Met 68 (2015) 1199.CrossRefGoogle Scholar
  29. 29.
    Maity, T, Singh, A, Dutta, A and Das, J, Mater Sci Eng A 666 (2016) 72.CrossRefGoogle Scholar
  30. 30.
    Juhasz A, Tasnandi P, Szaszvari P, and Kovacs I, J Mater Sci 21 (1986) 3287.CrossRefGoogle Scholar
  31. 31.
    Rogal L, Morgiel J, Świątek Z, and Czerwiński F, Mater Sci Eng A 651 (2016) 590.CrossRefGoogle Scholar
  32. 32.
    Senkov O N, Wilks G B, Scott J M, and Miracle D B, Intermetallics 19 (2011) 698.CrossRefGoogle Scholar
  33. 33.
    Wang X F, Zhang Y, Qiao Y, and Chen G L, Intermetallics 15 (2007) 357.CrossRefGoogle Scholar
  34. 34.
    Wang F J, Zhang Y, Chen G L, and Davies H A, J Eng Mater Technol 131 (2009) 034501.CrossRefGoogle Scholar
  35. 35.
    Shun T T, and Du Y C, J Alloys Compd 479 (2009) 157.CrossRefGoogle Scholar
  36. 36.
    Park J M, Sohn S W, Kim T E, Kim D H, Kim K B, Kim W T, Scripta Mater 57 (2007) 1153.CrossRefGoogle Scholar
  37. 37.
    Maity T, and Das J, AIP Advances 2 (2012) 032175.CrossRefGoogle Scholar
  38. 38.
    Maity T, and Das J, Intermetallics 63 (2015)51.CrossRefGoogle Scholar
  39. 39.
    Xing L Q, Li Y, Ramesh K T, Li J, and Hufnagel T C, Phys Rev B 64 (2001) 180201.CrossRefGoogle Scholar
  40. 40.
    Schroers J, and Johnson W L, Phys Rev Lett 93 (2004) 255506.CrossRefGoogle Scholar
  41. 41.
    Das J, Tang M B, Kim K B, Theissmann R, Baier F, Wang W H, and Eckert J, Phys Rev Lett 94 (2005) 205501.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations