Transactions of the Indian Institute of Metals

, Volume 71, Issue 12, pp 3045–3062 | Cite as

Optimizing High-Velocity Oxygen Fuel-Sprayed WC–17Co Coating Using Taguchi Experimental Design to Improve Tribological Properties

  • Saeideh Fayyazi
  • Mohammad Ebrahim Bahrololoom
  • Mahdi Kasraei
Technical Paper


High-velocity oxy-fuel (HVOF) thermal spraying is one of the best methods for depositing conventional WC–Co cermets. The aim of the present work was to optimize the WC–17Co coating deposited using HVOF spraying process. Taguchi fractional factorial experimental design (L18) and ANOVA were used to optimize the process parameters. Seven factors (spray distance, oxygen flow rate, carrier gas flow rate, powder feed rate, coating thickness, substrate preheat temperature and grit type) were selected. Grit type had two levels, and the others had three levels. The coating properties measured were wear resistance, microhardness and roughness. Pin-on-disk wear tests were used for measuring wear. Scanning electron micrographs were used to investigate the cross sections of the coatings and the morphology of the as-sprayed coatings, and their relationship between the process parameters and energy-dispersive X-ray was used to analyze the coatings. In Taguchi method, “lower the better” quality was used for optimizing roughness and “higher the better” quality was used for optimizing wear resistance and microhardness. The most influential factor on increasing wear resistance and microhardness was powder feed rate and on reducing the roughness was oxygen flow rate. In addition, the influence of grit type on wear resistance and microhardness and the influences of grit type and substrate preheat temperature on the coating roughness were negligible.


WC–17Co coating Optimization HVOF thermal spraying Wear Microhardness Roughness 


  1. 1.
    Bayer R G, Mechanical Wear Fundamentals and Testing, CRC Press, Boca Raton (2004) p 1 (revised and expanded).CrossRefGoogle Scholar
  2. 2.
    Ulianitsky V, Batraev I, Dudina D, Smurov I, Surf Coat Technol 318 (2017) 244.CrossRefGoogle Scholar
  3. 3.
    Suresh Babu P, Basu B, Sundararajan G, Acta Mater 56 (2008) 5012.CrossRefGoogle Scholar
  4. 4.
    Du H, Hua W, Liu J, Gong J, Sun C, Wen L, Mater Sci Eng A 408 (2005) 202.CrossRefGoogle Scholar
  5. 5.
    Chivavibul P, Watanabe M, Kuroda S, Kawakita J, Komatsu M, Sato K, Kitamura J, J Therm Spray Technol 19 (2010) 81.CrossRefGoogle Scholar
  6. 6.
    KaraoglanliA C, Oge M, Doleker K M, Hotamis M, Surf Coat Technol 318 (2017) 299.CrossRefGoogle Scholar
  7. 7.
    WoodR J, Int J Refract Met Hard Mater 28 (2010) 82.CrossRefGoogle Scholar
  8. 8.
    Sobolev V V, Guilemany J M, Joshi S, Nutting J, High Velocity Oxy-Fuel Spraying: Theory, Structure-Property Relationships and Applications, London: Maney (2004).Google Scholar
  9. 9.
    Davis J R, Handbook of Thermal Spray Technology, ASM International, Russell Township (2004).Google Scholar
  10. 10.
    Tillmann W, Hollingsworth P, Baumann I, Hiegemann L, Weddeling C, Tekkaya A E, Rausch S, Biermann D, Surf Coat Technol 268 (2015) 134.CrossRefGoogle Scholar
  11. 11.
    Torres B, Taltavull C, López A, Campo M, Rams J, Surf Coat Technol 261 (2015) 130.CrossRefGoogle Scholar
  12. 12.
    Murugan K, Ragupathy A, Balasubramanian V, Sridhar K, Surf Coat Technol 247 (2014) 90.CrossRefGoogle Scholar
  13. 13.
    Lugscheider E, Herbst C, Zhao L, Surf Coat Technol 108 (1998) 16.CrossRefGoogle Scholar
  14. 14.
    Baiamonte L, Marra F, Gazzola S, Giovanetto P, Bartuli C, Valente T, Pulci G, Surf Coat Technol 295 (2016) 78.CrossRefGoogle Scholar
  15. 15.
    Rajasekaran B, Mauer G, Vaßen R, Röttger A, Weber S, Theisen W, Surf Coat Technol 205 (2010) 2449.CrossRefGoogle Scholar
  16. 16.
    Ruiz-Luna H, Lozano-Mandujano D, Alvarado-Orozco J, Valarezo A, Poblano-Salas C, Trápaga-Martínez L, Espinoza-Beltrán F, Muñoz-Saldaña J, J Therm Spray Technol 23 (2014) 950.CrossRefGoogle Scholar
  17. 17.
    Thiruvikraman C, Balasubramanian V, Sridhar K, J Therm Spray Technol 23 (2014) 860.CrossRefGoogle Scholar
  18. 18.
    Lyphout C, Nylén P, Östergren L, J Therm Spray Technol 20 (2011) 76.CrossRefGoogle Scholar
  19. 19.
    de Villiers Lovelock H, Richter P, Benson J, Young P, J Therm Spray Technol 7 (1998) 97.CrossRefGoogle Scholar
  20. 20.
    Yankee S, Pletka B, Salsbury R, Paper presented at the Fourth National Thermal Spray Conference, Pittsburgh, Pennsylvania, ASM International, USA (1991) p 475.Google Scholar
  21. 21.
    Mohammadi Z, Ziaei-Moayyed A, Mesgar A S-M, J Mater Process Technol 194 (2007) 15.CrossRefGoogle Scholar
  22. 22.
    Paredes R, Amico S, d’Oliveira A, Surf Coat Technol 200 (2006) 3049.CrossRefGoogle Scholar
  23. 23.
    Tillmann W, Hagen L, Luo W, Coatings 7 (2017) 125.CrossRefGoogle Scholar
  24. 24.
    Saravanan P, Selvarajan V, Srivastava M, Rao D, Joshi S, Sundararajan G, J Therm Spray Technol 9 (2000) 505.CrossRefGoogle Scholar
  25. 25.
    Roy R K, A Primer on the Taguchi Method, Society of Manufacturing Engineers, Dearborn (1990).Google Scholar
  26. 26.
    ASTM International, Standard Guide for Metallographic Preparation of Thermal Sprayed Coatings, ASTM International, West Conshohocken (2014).Google Scholar
  27. 27.
    Cizek J, Khor K A, Prochazka Z, Mater Sci Eng C 27 (2007) 340.CrossRefGoogle Scholar
  28. 28.
    Ji G-C, Li C-J, Wang Y-Y, Li W-Y, Surf Coat Technol 200 (2006) 6749.CrossRefGoogle Scholar
  29. 29.
    Bayer R, Sirico J, Wear 35 (1975) 251.CrossRefGoogle Scholar
  30. 30.
    Al-Samarai R A, Haftirman K R A, Al-Douri Y, Int J Sci Eng Res 3 (2012) 1.Google Scholar
  31. 31.
    Marple B R, Lima R S, J Thermal Spray Technol 14 (2005) 67.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  1. 1.Department of Biosystems EngineeringShiraz UniversityShirazIran
  2. 2.Department of Materials EngineeringShiraz UniversityShirazIran

Personalised recommendations