Transactions of the Indian Institute of Metals

, Volume 71, Issue 12, pp 3029–3036 | Cite as

Effect of Using Carbon Nanotubes on ILSS of Glass Fiber-Reinforced Polymer Laminates

  • S. K. ChaudharyEmail author
  • K. K. Singh
  • R. Venugopal
Technical Paper


Carbon nanotubes have been considered as good filler materials for enhancing the characteristics of advanced nano-composites due to their excellent properties. In z-axis property, especially interlaminar shear strength (ILSS) is of prime concern for FRP laminates undergoing lateral loads. The present work highlights the effect of MWCNTs on the ILSS of GFRP composites manufactured by vacuum-assisted hand layup technique. Result shows that the addition of 0.5 wt% MWCNTs into the unfilled GFRP composite decreases ILSS by 8.35%. The fracture surface of glass fiber-reinforced polymer composites is analyzed by field-emission scanning electron microscope, and micrographs are used to delineate the ILSS outcomes.


Carbon nanotubes Glass fiber Composite ILSS 



Authors remain grateful to Department of Mechanical Engineering, I.I.T. (I.S.M), Dhanbad for providing facilities for this research work.


  1. 1.
    Iijima S, Lett Nat 354 (2009) 56.CrossRefGoogle Scholar
  2. 2.
    Ajayan P M, Charlier J C, and Rinzler A G, Proc Natl Acad Sci USA (PNAS), 96 (1991) 14199.CrossRefGoogle Scholar
  3. 3.
    Qian D, and Dickey E C, Appl Phys Lett 76 (2000) 2868.CrossRefGoogle Scholar
  4. 4.
    Bower C, Rosen R, Jin L, Han J, Zhou O, Appl Phys Lett 74 (1999) 3317.CrossRefGoogle Scholar
  5. 5.
    Shokrieh M M, Saeedi A, and Chitsazzadeh M, J Nanostruct Chem 3 (2013) 1.CrossRefGoogle Scholar
  6. 6.
    Singh K K, Chaudhary S K, Venugopal R, and Gaurav A, Proc Inst Mech Eng Part N J Nanomater Nanoeng Nanosyst 231 (2017) 141.Google Scholar
  7. 7.
    Singh K K, Singh N K, and Jha R, J Compos Mater, 50 (2015) 1853.CrossRefGoogle Scholar
  8. 8.
    Rahman M, Hosur M, ZainuddinS, Vaidya U, Tauhid A, Kumar A, Trovillion J, and Jeelani S, Int J Impact Eng 57 (2013) 108.CrossRefGoogle Scholar
  9. 9.
    Lau K-T, and David H, Carbon 40 (2002) 1605.CrossRefGoogle Scholar
  10. 10.
    Zhu J, Imam A, Crane R, Crane R, Lozano K, Khabashesku V N, and Barrera E V, Compos SciTechnol, 67 (2007) 1509.CrossRefGoogle Scholar
  11. 11.
    Wichmann M H G, Sumfleth J, Gojny F H, Quaresimin M, Fiedler B, and Schulte K, Eng Fract Mech, 73 (2006) 2346.CrossRefGoogle Scholar
  12. 12.
    Fan Z, Santare M H, and Advani S G, Compos Part A 39 (2008) 540.CrossRefGoogle Scholar
  13. 13.
    Song Y S, Youn J R, Carbon 43 (2005) 1378.CrossRefGoogle Scholar
  14. 14.
    Wei F, Zhang Q, Qian W-Z, Yu H, Wang Y, Luo G-H, Xu G-H, Powder Technol 183 (2008) 10.CrossRefGoogle Scholar
  15. 15.
    Jalageri H B, Raju G U, and Kodancha K G, Am J Mater Sci 5 (2015) 101.Google Scholar
  16. 16.
    Jebadurai D S, and Babu A S, Indian J Eng Mater Sci 22 (2015) 167.Google Scholar
  17. 17.
    Liu Y, Yang J-P, Xiao H-M, Qu C-B, Feng Q-P, Fu S-Y, and Shindo Y S, Compos Part B 43 (2012) 95.CrossRefGoogle Scholar
  18. 18.
    Zhang J, Ju S, Jiang D, and Peng H-X, Composites 54 (2013) 371.CrossRefGoogle Scholar
  19. 19.
    Lau K-t, and Shi S-q, Carbon 40 (2002) 2965.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringB.I.T. SindriDhanbadIndia
  2. 2.Department of Mechanical EngineeringI.I.T. (I.S.M)DhanbadIndia
  3. 3.Department of Fuel and Mineral EngineeringI.I.T. (I.S.M)DhanbadIndia

Personalised recommendations