Advertisement

Transactions of the Indian Institute of Metals

, Volume 71, Issue 12, pp 3021–3027 | Cite as

Enhancing the Environmentally Assisted Cracking Resistance of Aircraft Quality Al Alloy of Type AA7075 Stiffened with Polymer Matrix Composite Using Cerium Chloride Inhibitor

  • S. S. Kale
  • V. S. Raja
  • A. K. Bakare
Technical Paper
  • 18 Downloads

Abstract

This study explores a methodology to raise environmentally assisted cracking resistance of alclad Al–Zn–Mg–Cu (AA7075) alloy, used in aircraft structures, stiffened with polymer matrix composite asymmetric patch in order to suppress growth of fatigue cracks. Fracture mechanics studies of adhesively bonded center-pre-cracked Al alloy specimens having stiffeners were carried out in 3.5 wt% sodium chloride environment to understand the effect of cerium chloride inhibitor on the threshold stress intensity for stress corrosion cracking as well as the second-stage (steady-state) crack growth rate. It was observed that in the peak- and the two-step-aged tempers, the crack growth rate of the alloy reduced by two and a half, and four times, respectively, while the threshold stress intensity increased by 14–15% due to the addition of 1000 ppm of this inhibitor. The study offers a method to enhance significantly life of aging aircrafts stiffened with polymer matrix composite.

Keywords

Aluminum alloy Polymer matrix composite Cerium chloride Inhibitor Stress corrosion Asymmetric stiffener 

Notes

Acknowledgements

One of the authors, S. S. Kale, expresses sincere gratitude to Mr. P. Jayapal, Chief Executive (Airworthiness) and Mr. G. Gouda, Group Director (Propulsion), CEMILAC, DRDO, Bangalore, for providing opportunity, support and encouragement for research in the field of life extension of aircraft materials. He further expresses his sincere thanks to the management of HAL (Foundry & Forge), Bangalore, for extending the test facilities and required support during the progress of this work.

References

  1. 1.
    Rendigs K H, Mater. Sci. Forum, 242 (1997) 11.CrossRefGoogle Scholar
  2. 2.
    Heinz A, Haszler A, Keidel C, Moldenhauer S, Benedictus R, and Miller W S, Mater. Sci. Eng. A, 280 (2000) 102.CrossRefGoogle Scholar
  3. 3.
    Baker A A, Composites, 18 (1987) 293.CrossRefGoogle Scholar
  4. 4.
    Baker A A, Compos. Struct., 47 (1999) 431.CrossRefGoogle Scholar
  5. 5.
    Tsai G C, and Shen S B, Compos. Struct., 64 (2004) 79.CrossRefGoogle Scholar
  6. 6.
    Okafor C, Singh N, Enemuoh U E, and Rao S V, Compos. Struct., 71 (2005) 258.CrossRefGoogle Scholar
  7. 7.
    Pastor M L, Balandraud X, Robert J L, and Grédiac M, Int. J. Fatigue, 31 (2009) 850.CrossRefGoogle Scholar
  8. 8.
    Kale S S, Raja V S, and Bakare A K, Corros. Sci., 75 (2013) 318.CrossRefGoogle Scholar
  9. 9.
    Xia L, Akiyam E, Frankel G, and McCreery R, Electrochem. Soc., 147 (2000) 2556.CrossRefGoogle Scholar
  10. 10.
    Zhao J, Frankel G, and McCreery R L, J. Electrochem. Soc., 145 (1998) 2258.CrossRefGoogle Scholar
  11. 11.
    Leggat R B, Taylor S R, Zhang W, and Buchheit R G, Corrosion, 58 (2002) 283.CrossRefGoogle Scholar
  12. 12.
    Zhang W, and Buchheit R G, Corrosion, 59 (2003) 356.CrossRefGoogle Scholar
  13. 13.
    Twite R L, and Bierwagen G P, Prog. Org. Coat., 33 (1998), 91.CrossRefGoogle Scholar
  14. 14.
    Bethencourt M, Botana F J, Calvino J J, Marcos M, and Rodriguez-Chacon M A, Corros. Sci., 39 (1998) 1803.CrossRefGoogle Scholar
  15. 15.
    Mishra A K, and Balasubramaniam R, Corros. Sci., 49 (2007) 1027.CrossRefGoogle Scholar
  16. 16.
    Mishra A K, and Balasubramaniam R, Mater. Chem. and Phys., 103 (2007) 385.CrossRefGoogle Scholar
  17. 17.
    Aballe A M, Bethencourt M, Botana F J, and Cano M, Mater. Corros., 52 (2001) 344.CrossRefGoogle Scholar
  18. 18.
    Hinton B R W, Arnott D R, and Ryan N E, Metals Forum, 7 (1984) 211.Google Scholar
  19. 19.
    Hinton B R W, Arnott D R, and Ryan N E, Mater. Forum, 9 (1986) 162.Google Scholar
  20. 20.
    Arnott D R, Hinton B R W, and Ryan N E, Mater. Performance, 26 (1987) 42.Google Scholar
  21. 21.
    Zhao D, Sun J, Zhang L, Tan Y, and Li J, J. Rare Earths, 28 (2010) 371.CrossRefGoogle Scholar
  22. 22.
    Hill J A, Markley T, Forsyth M, Howlett P C, and Hinton B R W, J. Alloys and Comp., 509 (2011) 1683.CrossRefGoogle Scholar
  23. 23.
    Kale S S, Raja V S, and Bakare A K, Corros. Eng. Sci. and Tech., 49 (2014) 116.CrossRefGoogle Scholar
  24. 24.
    Fridlyander N I, Met. Sci. and Heat Tr., 43 (2001) 6.CrossRefGoogle Scholar
  25. 25.
    ASTM-D 5687-M-95, ASTM International, USA (1995).Google Scholar
  26. 26.
    ASTM-E 8/E 8 M-08, ASTM International, USA (2008).Google Scholar
  27. 27.
    ASTM-E 399-08, ASTM International, USA (2009).Google Scholar
  28. 28.
    ASTM-E 647-08, ASTM International, USA (2008).Google Scholar
  29. 29.
    Swenson D, and James M, FRANC2D and FRANC2D/L: A crack propagation simulator for plane layered structures, Cornell University (1998).Google Scholar
  30. 30.
    ISO 7539-6, International Organisation of Standardisation, Switzwerland (2011).Google Scholar
  31. 31.
    Hinton B R W, J. Alloys and Comp., 180 (1992) 15.CrossRefGoogle Scholar
  32. 32.
    Hinton B R W, Forsyth M, Seter M, and Tan M Y, in Proc. 16th Asian Pacific Corrosion Control Conf. on Corrosion Prevention and Environmental Protection of Materials for a New Era, Kaohsiung, Taiwan (2012) Paper 86.Google Scholar
  33. 33.
    Davenport A J, Isaacs H S, and Kendig M W, Corr. Sci., 32 (1991) 653.CrossRefGoogle Scholar
  34. 34.
    Buchheit R G, Mamidipally S B, Schmutz P, and Guan H, Corrosion, 58 (2002) 3.CrossRefGoogle Scholar
  35. 35.
    Joshi S, Fahrenholtz W G, and O’Keefe M J, Surf. Coat. Technol., 205 (2011) 4312.CrossRefGoogle Scholar
  36. 36.
    Phanasgaonkar A, and Raja V S, Surf. Coat. Technol., 203 (2009) 2260.CrossRefGoogle Scholar
  37. 37.
    Varela F, Hill J, Forsyth M, Birbilis N, Howlett P, and Markley T, in Proc. Corrosion and Prevention 2009: A Symposium on Management of Infrastructure Deterioration, Coff’s Harbour, NSW, Australia (2009), p 804.Google Scholar
  38. 38.
    Kannan M B, Raja V S, Raman R and Mukhopadhyay A K, Corrosion 59, (2003) 881.CrossRefGoogle Scholar
  39. 39.
    Krishanan M A and Raja V S, Corros. Sci., 109 (2016) 94.CrossRefGoogle Scholar
  40. 40.
    Krishanan M A, Raja V S, Shukla S and Vaidya S M, 49A (2018) 2487.Google Scholar
  41. 41.
    Puiggali M, Zielinski A, Olive J M, Renauld E, Desjardins D, and Cid M, Corros. Sci., 40 (1998) 805.CrossRefGoogle Scholar
  42. 42.
    Kannan M B, and Raja V S, Adv. in Mater. Sci., 7 (2007) 21.Google Scholar
  43. 43.
    Kannan M B, Raja V S, Mukhopadhyay A K, and Schmuki P, Metall. Mater. Trans. A, 36 (2005) 3257.CrossRefGoogle Scholar
  44. 44.
    Feng L I, Peng Z W, Chao-xing L I, and Zhi-qiang A, Trans. Nonferrous Met. Soc. China, 18 (2008) 755.CrossRefGoogle Scholar
  45. 45.
    Mukhopadhyay A K, Mater. Sci. Forum, 710 (2012) 50.CrossRefGoogle Scholar
  46. 46.
    Park J K, and Ardell A J, Metall. Trans. A, 14 (1983) 1957.CrossRefGoogle Scholar
  47. 47.
    Park J K, and Ardell A J, Acta Metall., 34 (1986) 2399.CrossRefGoogle Scholar
  48. 48.
    Kannan M B, Raja V S and Mukhopadhyay A K, Scripta Mater., 51(2004) 1075.CrossRefGoogle Scholar
  49. 49.
    Sarkar B, Marek M, and Starke Jr. E A, Metall. Trans., 12 (1981) 1939.CrossRefGoogle Scholar
  50. 50.
    Kannan M B, and Raja V S, J. Mater. Sci., 42 (2007) 5458.CrossRefGoogle Scholar
  51. 51.
    Birbilis N, and Buchheit R G, J. Electrochem. Soc., 152 (2005) 140.CrossRefGoogle Scholar
  52. 52.
    Wang C, Jiang F, and Wang F, Corrosion, 60 (2004) 237.CrossRefGoogle Scholar
  53. 53.
    Hughes A E, Gorman J D, Miller P R, Sexton B A, Paterson P J K, and Taylor R J, Surf. Interface Anal., 36 (2004) 290.CrossRefGoogle Scholar
  54. 54.
    Campestrini P, Terryn H, Hovestad A, and Wit J H W D, Surf. Coat. Technol., 176 (2004) 365.CrossRefGoogle Scholar
  55. 55.
    Aldykiewiczs A J, Isaacs H, and Davenport A J, J. Electrochem. Soc., 142 (1995) 3342.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  1. 1.Regional Centre for Military Airworthiness (F&F), CEMILAC, DRDOBangaloreIndia
  2. 2.Department of Metallurgical Engineering and Materials ScienceIIT BombayMumbaiIndia
  3. 3.Regional Centre for Military Airworthiness (Nsk), CEMILAC, DRDONasikIndia

Personalised recommendations