Advertisement

Transactions of the Indian Institute of Metals

, Volume 71, Issue 12, pp 3011–3020 | Cite as

A Comprehensive Study of Diffusion Bonding of Mg AZ31 to Al 5754, Al 6061 and Al 7039 Alloys

  • Mojtaba Jafarian
  • Mohsen Saboktakin Rizi
  • Morteza Jafarian
  • Hossein Zare
  • Hamid Reza Javadinejad
Technical Paper
  • 37 Downloads

Abstract

In the present study, microstructural and mechanical properties of diffusion bonding of AZ31–Mg with Al 5754, Al 6061, and Al 7039 alloys were compared under same conditions. The vacuum diffusion processes were performed at a temperature of 440 °C, the pressure of 29 MPa, and a vacuum of 1 × 10−4 torr for 60 min. The microstructural characterizations were investigated using optical microscopy and scanning electron microscopy equipped with EDS analysis and linear scanner. The XRD analysis was performed to study phase figures near the interface zone. The results revealed the formation of brittle intermetallic compounds like Al12Mg17, Al3Mg2, and their other combinations at bonding interfaces of all samples. Additionally, the hardness of Al alloys seemed to play a key role in increasing diffusion rate of magnesium atoms toward the aluminum atoms, with Al 6061 alloy having the highest diffusion rate. It consequently led to an increase in diffusion rate and thus formation of a strong diffusion bonding between magnesium and aluminum alloys. The highest strength was about 42 MPa for the diffusion bonding between Mg AZ31 and Al 6061. Further investigations on surfaces indicated that the brittle phases especially Al3Mg2 caused brittle fracturing.

Keywords

Diffusion bonding Aluminum alloys Magnesium AZ31 Microstructure Mechanical properties 

References

  1. 1.
    Jafarian M, Khodabandeh A, and Manafi, S, Mater Des 65 (2015) 160.CrossRefGoogle Scholar
  2. 2.
    Guo W, Hua M, and Kin Lim Ho J, Compos Sci Technol 67 (2007) 1041.CrossRefGoogle Scholar
  3. 3.
    Hui L, Ming Q, and Da L I, Laser J 28 (2007) 61.Google Scholar
  4. 4.
    Wang J, Feng J C, and Wang Y X, J Mater Sci Technol 24 (2008) 827.CrossRefGoogle Scholar
  5. 5.
    Liu B X, Huang L J, Geng L, Wang B, Liu C, and Zhang W C, J Alloys Compd 602 (2014) 187.CrossRefGoogle Scholar
  6. 6.
    Liu P, Li Y, Haoran G, and Juan W, Vacuum 80 (2006) 395.CrossRefGoogle Scholar
  7. 7.
    Li Y, Liu P, Wang J, and Ma H, Vacuum 82 (2008) 9.Google Scholar
  8. 8.
    Mahendran G, Balasubramanian N, and Senthilvelan T, Trans Nonferrous Met Soc China 20 (2010), 997.CrossRefGoogle Scholar
  9. 9.
    Mahendran G, Balasubramanian V, and Senthilvelan T, Mater Des 30 (2009) 1240.CrossRefGoogle Scholar
  10. 10.
    Liu L M, Zhao L M, and Xu R Z, Mater Des 30 (2009) 4548.CrossRefGoogle Scholar
  11. 11.
    Jing S, Ke-hong W, Qi Z, De-ku Z, Jun H, and Jia-qi G, Trans Nonferrous Met Soc China 22 (2012) 1961.CrossRefGoogle Scholar
  12. 12.
    Joseph Fernandus M, Senthilkumar T, Balasubramanian V, and Rajakumar S, Mater Des 33 (2012) 31.CrossRefGoogle Scholar
  13. 13.
    Cooper D R, and Allwood J M, Proc Eng 81 (2014) 2147.CrossRefGoogle Scholar
  14. 14.
    Orhan N, Khan T I, and Eroglu M, Scr Mater 45 (2001) 441.CrossRefGoogle Scholar
  15. 15.
    Kundu S, and Chatterjee S, Mater Charact 59 (2008) 631.CrossRefGoogle Scholar
  16. 16.
    Kundu S, and Chatterjee S, Mater Sci Eng A 480 (2008) 316.CrossRefGoogle Scholar
  17. 17.
    Guo W, Hua M, Wai Law H, and Kin Lim Ho J, Mater Sci Eng A 490 (2008) 427.CrossRefGoogle Scholar
  18. 18.
    Ji-cai F, Ya-rong W, and Zong-dian Z, Chin J Nonferrous Met 15 (2005) 165.Google Scholar
  19. 19.
    Somasekharan A C, and Murr L E, Mater Charact 52 (2004) 49.CrossRefGoogle Scholar
  20. 20.
    Yilmaz O, and Celik H, J Mater Process Technol 141 (2003) 67.CrossRefGoogle Scholar
  21. 21.
    Liu W, Long L, Ma Y, and Wu L, J Alloys Compd 643 (2015) 34.CrossRefGoogle Scholar
  22. 22.
    Dietrich D, Nickel D, Krause M, Lampke T, Coleman M P, and Randle V, J Mater Sci 46 (2011) 357.CrossRefGoogle Scholar
  23. 23.
    Joseph Fernandus M, Senthilkumar T, and Balasubramanian V, Mater Des 32 (2011) 1651.CrossRefGoogle Scholar
  24. 24.
    Chen S, Ke F, Zhou M, and Bai Y Acta Mater 55 (2007) 3169.CrossRefGoogle Scholar
  25. 25.
    Tanguep Njiokep E M, Salamon M, and Mehrer H, Defect Diffus Forum 194 (2001) 1581.CrossRefGoogle Scholar
  26. 26.
    Li Z F, Dong J, Zeng X Q, Lu C, Ding W J, and Ren Z M, J Alloys Compd 440 (2007) 132.CrossRefGoogle Scholar
  27. 27.
    Shirzadi A A, Assadi H, and Wallach E R, Surf Interface Anal 31 (2001) 609.CrossRefGoogle Scholar
  28. 28.
    Mezbahul-Islam M, Mostafa A O and Medraj M, J Mater (2014) 1.Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  1. 1.Young Researchers and Elite Club, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Department of Industrial Engineering, Lenjan BranchIslamic Azad UniversityIsfahanIran

Personalised recommendations