Advertisement

Transactions of the Indian Institute of Metals

, Volume 71, Issue 12, pp 3003–3009 | Cite as

Temperature, Stress and Distortion of Ti–6Al–4V Alloy Low-Temperature Friction Stir Welding Assisted by Trailing Intensive Cooling

  • Quan Wen
  • Shude Ji
  • Liguo Zhang
  • Yumei Yue
  • Zan Lv
Technical Paper
  • 65 Downloads

Abstract

The low-temperature friction stir welding (FSW) in which peak temperature is lower than the transus temperature of β phase was achieved using rotational speed of 100 rpm and welding speed of 30 mm/min. Trailing intensive cooling with liquid nitrogen was successfully applied to FSW under the low-temperature welding conditions. Comparisons of the temperature field, plastic strain, residual stress and welding distortion between intensive and conventional cooling were investigated by experiment and simulation. Results reveal that trailing intensive cooling is attributed to shrink high-temperature area and reduce the value of peak temperature and plastic strain. Longitudinal residual stress presents M shape, and the reduction of maximum tensile residual stress reaches 4.8%. The welding distortion shows an anti-saddle shape, and the decrement of welding distortion in transverse direction is 34.5%.

Keywords

Friction stir welding Trailing intensive cooling Plastic strain Residual stress Welding distortion 

Notes

Acknowledgements

This work is supported by the Aeronautical Science Foundation of China (2014ZE54021).

References

  1. 1.
    Boyer R R, Mater Sci Eng A 213 (1996) 103.CrossRefGoogle Scholar
  2. 2.
    Buffa G, Int J Mater Form 9 (2016) 59.CrossRefGoogle Scholar
  3. 3.
    Strano M, Albertelli P, Chiappini E, and Tirelli S, Int J Mater Form 8 (2015) 601.CrossRefGoogle Scholar
  4. 4.
    Wen Q, Yue Y M, Ji S D, Li Z W, and Gao S S, High Temp Mater Process 35 (2015) 375.Google Scholar
  5. 5.
    Li W Y, Wang F F, Shi S X, Ma T J, and Li J L, J Mater Eng Perform 23 (2014) 4010.CrossRefGoogle Scholar
  6. 6.
    Wang F F, Li W Y, Shen J, Hu S Y, and dos Santos J F, Mater Des 86 (2015) 933.CrossRefGoogle Scholar
  7. 7.
    Rice J M, Mandal S, and Elmustafa A A, Int J Mater Form 7 (2014) 127.CrossRefGoogle Scholar
  8. 8.
    Zhou L, Liu H J, and Liu Q W, Mater Des 31 (2010) 2631.CrossRefGoogle Scholar
  9. 9.
    Dressler U, Biallas G, and Mercado U A, Mater Sci Eng A 526 (2009) 113.CrossRefGoogle Scholar
  10. 10.
    Lombard H, Hattingh D G, Steuwer A, and James M N, Mater Sci Eng A 501 (2009) 119.CrossRefGoogle Scholar
  11. 11.
    Soul F A, and Zhang Y H, Rare Met Mater Eng 35 (2006) 256.Google Scholar
  12. 12.
    Liu H J, Zhou L, and Liu Q W, Mater Des 31 (2010) 1650.CrossRefGoogle Scholar
  13. 13.
    Edwards P D, and Ramulu M, Sci Technol Weld Join 14 (2009) 476.CrossRefGoogle Scholar
  14. 14.
    Yue Y M, Wen Q, Ji S D, Ma L, and Lv Z, High Temp Mater Process (2016).  https://doi.org/10.1515/htmp-2015-0178.CrossRefGoogle Scholar
  15. 15.
    Han W T, Wan F R, Li G, Dong C L, and Tong J H, Sci Technol Weld Join 16 (2011) 453.CrossRefGoogle Scholar
  16. 16.
    Jalili N, Tabrizi H B, and Hosseini M M, J Mater Process Technol 237 (2016) 243.CrossRefGoogle Scholar
  17. 17.
    Fratini L, Buffa G, and Shivpuri R, Acta Mater 58 (2010) 2056.CrossRefGoogle Scholar
  18. 18.
    Ji S D, Yang Z P, Wen Q, Yue Y M, and Zhang L G, High Temp Mater Process (2017).  https://doi.org/10.1515/htmp-2016-0217.CrossRefGoogle Scholar
  19. 19.
    Richards D G, Prangnell P B, Withers P J, Williams S W, Nagy T, and Morgan S, Sci Technol Weld Join 15 (2010) 156.CrossRefGoogle Scholar
  20. 20.
    Editorial board of China Aviation Materials Handbook, China Aviation Materials Handbook, Beijing, China standards Press, 2002.Google Scholar
  21. 21.
    Li H K, Shi Q Y, and Zhao H Y, Trans China Weld Inst 27 (2006) 81.Google Scholar
  22. 22.
    He X C, Gu F S, and Ball A, Prog Mater Sci 65 (2014) 1.CrossRefGoogle Scholar
  23. 23.
    Darvazi A R, and Iranmanesh M, Mater Des 55 (2014) 812.CrossRefGoogle Scholar
  24. 24.
    Chiumenti M, Cervera M, Saracibar C A D, and Dialami N, Comput Methods Appl Mech Eng 254 (2013) 353.CrossRefGoogle Scholar
  25. 25.
    Riahi M, and Nazari H, Int J Adv Manuf Technol 55 (2011) 143.CrossRefGoogle Scholar
  26. 26.
    Khandkar M Z H, Khan J A, Reynolds A P, and Sutton M A, J Mater Process Technol 174 (2006) 195.CrossRefGoogle Scholar
  27. 27.
    Yan D Y, Wua A, Silvanus J, and Shi Q Y, Mater Des 32 (2011) 2284.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  1. 1.Faculty of Aerospace EngineeringShenyang Aerospace UniversityShenyangPeople’s Republic of China

Personalised recommendations