Advertisement

Transactions of the Indian Institute of Metals

, Volume 71, Issue 12, pp 2971–2983 | Cite as

Reductive Leaching of Manganese Nodule Using Saw Dust in Sulphuric Acid Medium

  • D. Hariprasad
  • M. Mohapatra
  • S. Anand
Technical Paper
  • 27 Downloads

Abstract

Single-step reductive dissolution studies were carried out to extract Mn, Cu, Ni and Co values from manganese nodules of Indian Ocean using a cellulosic low-cost reductant (sawdust) in sulphuric acid medium. The leaching conditions were optimized for maximum extractions by varying experimental parameters such as time, amount of reductant, sulphuric acid concentration, temperature, and pulp density. It was observed that both acid as well as reductant were essential to successfully dissolve most of the desired metal values. 99.5% Mn, 99.1% Cu, 99.6% Ni, 93% Co and 64.6% Fe were dissolved under the conditions: pulp density 10% (wt/v), amount of sawdust 0.5 g/g of nodule, acid 5% (v/v), temp 105 °C, time 2 h. The enriched leach liquor was obtained following lock cycle technique. The composition of solution taken for purification was: 98.2 g/L Mn, 4.1 g/L Cu, 5 g/L Ni, 336 ppm Co with 12.3 g/L Fe. Precipitated bulk sulphides of Cu, Ni, Co and crystallized MnSO4·H2O were the two products obtained after Fe removal from the solution. A schematic flow sheet was suggested. The complete process comprised of simple hydrometallurgical unit operations.

Keywords

Mn nodules Leaching Sawdust Precipitation MnSO4·H2

Notes

Acknowledgements

The authors are thankful to Prof. B K Mishra, Director, Institute of Minerals and Materials Technology, Bhubaneswar, Odisha, India, for his kind permission to publish this paper. The authors are also thankful to Dr I.N. Bhattacharya, Head, Hydro-Electro Metallurgy Department. GAP-0001 One of the authors, D. Hariprasad, expresses his gratitude to CSIR, New Delhi, for providing financial support as senior research fellow.

References

  1. 1.
    Brook J N, and Prosser A P, Trans Inst Min Metall 78 (1969) 64.Google Scholar
  2. 2.
    Fuerstenau D W, and Han K N, Miner Process Technol Rev 1 (1983) 1.CrossRefGoogle Scholar
  3. 3.
    Fuerstenau D W, Herring A P, and Hoover M, Trans Soc Min Eng AIME 254 (1973) 205.Google Scholar
  4. 4.
    Hubred G L, Mar Min 782 (1980) 191.Google Scholar
  5. 5.
    Jana R K, Pandey B D, and Premchand, Hydrometallurgy 53 (1999) 45.CrossRefGoogle Scholar
  6. 6.
    Agarwal J C, and Wilder T C, US Patent 3,788,841, 29 January (1974).Google Scholar
  7. 7.
    Agarwal J C, and Wilder T C, Canadian Patent 980,130, 23 December (1975).Google Scholar
  8. 8.
    Agarwal J C, Barner H E, Beecher N, Davies D S, and Kust R N, Paper presented at AIME Annual Meeting. Denver, CO, February, SME preprint (1978), 788.Google Scholar
  9. 9.
    Agarwal J C, Barner H E, Beecher N, Davies D S, and Kust R N, Min Eng 31 (1979) 1704.Google Scholar
  10. 10.
    Sazbo L J, US patent 3,983,017, 28 September (1976).Google Scholar
  11. 11.
    Sridhar R, J Metals 26 (1974) 18.Google Scholar
  12. 12.
    Sridhar R, Jones W E, and Warner J S, J Metals 28 (1976) 32.Google Scholar
  13. 13.
    Sridhar R, and Warner J S, US Patent 4,049,438, 20 September 20 (1977).Google Scholar
  14. 14.
    Hubred G L, An Extractive Metallurgy Study on Deep Sea Manganese Nodules with Special Emphasis on the Sulphuric Acid Autoclave Leach. Ph D Thesis, University of California, Berkley 220 (1973).Google Scholar
  15. 15.
    Hanieg G, and Meixner M J, Erzmetall 27 (1974) 335.Google Scholar
  16. 16.
    Han K N, and Fuerstenau D W, Int J Miner Proc 2 (1975) 163.Google Scholar
  17. 17.
    Junghanss H, and Roever W, German Patent 2,501,284, 1 September (1976).Google Scholar
  18. 18.
    Watanabe A, Miwa S, and Sakakibara S, Nogoya Kogyo Gijutsu Shikensho Hokoku, (Japan) 31 (1982) 190.Google Scholar
  19. 19.
    Das R P, Anand S, Das S C, and Jena P K, Hydrometallurgy 16 (1986), p. 335.CrossRefGoogle Scholar
  20. 20.
    Acharya S, Anand S, Das S C, Das R P, and Jena P K, Ertzmetall 42 (1989) 66.Google Scholar
  21. 21.
    Acharya S, and Das R P, Hydrometallurgy 19 (1987) 169.CrossRefGoogle Scholar
  22. 22.
    Anand S, Das S C, Das R P, and Jena P K, Meta. Mater Trans B 19 (1988) 331.Google Scholar
  23. 23.
    Bhattacharya I N, Anand S, Das S C, and Das R P, Trans Indian Instn Metals 42 (1989) 385.Google Scholar
  24. 24.
    Mohanty P S, Ghosh M K, Anand S, and Das R P, Trans Inst Min Metall Sec C 103 (1994) C151.Google Scholar
  25. 25.
    Das R P, and Anand S, in Proceedings 2nd Ocean Mining Symposium, ISOPE, Seoul, November 24–26 (1997), p. 165.Google Scholar
  26. 26.
    Jana R K, and Akerkar D D, Hydrometallurgy, 22 (1989) 363.CrossRefGoogle Scholar
  27. 27.
    Jana R K, Murthy D S, Nayak A K, Mahanty M S, and Tiwary S K, Int J Miner Process 30 (1990) 127.CrossRefGoogle Scholar
  28. 28.
    Srikanth S, Alex T C, Agrawal A, and Premchand P, in Proceedings 2nd Ocean Mining Symposium, Seoul, South Korea, November 24–26 (1997), p 177.Google Scholar
  29. 29.
    Jana R K, Srikanth S, Pandey B D, and Kumar V, Metals Mater Process 11 (1999) 133.Google Scholar
  30. 30.
    Monhemius A J, in Topics in Non Ferrous Extractive Metallurgy, (ed) Burkin R, Society of chemical industry, London (1980), p 42.Google Scholar
  31. 31.
    Han K N, and Fuerstenau D W, Mar Min 2 (1986) 155.Google Scholar
  32. 32.
    Haynes B W, Law S L, Barron D C, Kramer G W, and Maeda R, US Bureau of Mines, Bull 679 (1985).Google Scholar
  33. 33.
    Allen J P, and Corwin R R, U.S. Patent No. 4872909, (1989).Google Scholar
  34. 34.
    Kawahara M, and Mitsuo T, J Min Mater Process Inst Jpn. 108 (1992) 396.Google Scholar
  35. 35.
    Anand S, Das S C, Das R P, and Jena P K, Hydrometallurgy 20 (1988) 155.CrossRefGoogle Scholar
  36. 36.
    Das SC, Anand S, Das RP, and Jena PK, Aus IMM Bull Proc 294 (1989) 73.Google Scholar
  37. 37.
    Kawahara M, Mitsuo T, and Katayama K I, J Min Mater Proces Inst Jpn 10 (1991) 871.Google Scholar
  38. 38.
    Asai S, Negi H, and Konishi Y, Can J Chem Eng 64 (1986) 237.CrossRefGoogle Scholar
  39. 39.
    Kanungo S B, and Das R P, Hydrometallurgy 20 (1988) 135.CrossRefGoogle Scholar
  40. 40.
    Acharya R, Ghosh M K, Anand S, and Das R P, Hydrometallurgy 53 (1999) 169.CrossRefGoogle Scholar
  41. 41.
    Das G K, Anand S, Das R P, Muir D, and Singh P, Miner Process Extr Metall Rev 20 (2000) 377.Google Scholar
  42. 42.
    Kanungo S B, and Jena PK, Hydrometallurgy 21(1988) 23.Google Scholar
  43. 43.
    Kanungo S B, and Jena P K, Hydrometallurgy 21 (1988) 41.Google Scholar
  44. 44.
    Paramaguru R K, and Kanungo S B, Can Metall Q 37 (1998) 405.Google Scholar
  45. 45.
    Kanungo S B, Hydrometallurgy 52 (1999) 313.CrossRefGoogle Scholar
  46. 46.
    Kanungo S B, Hydrometallurgy 52 (1999) 331.CrossRefGoogle Scholar
  47. 47.
    Hariprasad D, Mohapatra M, and Anand S, J Chem Technol Biotechnol 88 (2013) 1114.Google Scholar
  48. 48.
    Hariprasad D, Mohapatra M, and Anand S, J Min Metall Sec B Metall 49 (2013) 97.Google Scholar
  49. 49.
    Jana R K, Singh D D N, and Roy S K, Mater Trans JIM (Jpn) 34 (1993) 593.Google Scholar
  50. 50.
    Jana R K, Singh D D N, and Roy S K Hydrometallurgy 38 (1995) 289.CrossRefGoogle Scholar
  51. 51.
    Zhang Y, Liu Q, and Sun C, Miner Eng 14 (2001) 525.Google Scholar
  52. 52.
    Zhang Y, Liu Q, and Sun C, Miner Eng 14 (2001) 539.Google Scholar
  53. 53.
    Ghosh M K, Barik S P, and Anand S, Trans Indian Inst Met 61 (2008) 471.Google Scholar
  54. 54.
    Kim I S, Park K H, and Kim H I, in Proceedings of 6th ISOPE Ocean Mining Symposium. Changsha, Hunan, China, 9–13 October (2005), p. 223.Google Scholar
  55. 55.
    Park K H, and Kim D J, Met Mater Process 11 (1999) 117–124.Google Scholar
  56. 56.
    Choi K S, and Sohn J W, in Proceedings of the ISOPE - Ocean Mining Symposium Held at Tsukuba, Japan, during 21–22 November (1995), p. 193.Google Scholar
  57. 57.
    Anand S, and Das R P, in Deep Sea Mining: Resource, Potential, Technical and Environment Considerations, (ed) Sharma R, Springer Link, (2017), p 365.Google Scholar
  58. 58.
    Randhawa N S, Hait J, and Jana R K, Hydrometallurgy 165 (2016) 166.CrossRefGoogle Scholar
  59. 59.
    Feng Y-L, Zhang S-Y, and Li H-R, Int J Miner Metall Mater 23 (2016) 241.CrossRefGoogle Scholar
  60. 60.
    Vogel A I, A Text Book of Quantitative Inorganic Analysis, 5th edn, The English Language Book Society and Longmans Green and Co., London (2000).Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  1. 1.Hydro-Electro Metallurgy DepartmentInstitute of Minerals and Materials TechnologyBhubaneswarIndia

Personalised recommendations