Advertisement

Transactions of the Indian Institute of Metals

, Volume 71, Issue 12, pp 2873–2892 | Cite as

The Importance of Electroless Metallic Build-Up on Surface Modified Substrates for Multifunctional Engineering Applications: A Recent Progress Update

  • Swaroop Gharde
  • Balasubramanian Kandasubramanian
Review Paper
  • 45 Downloads

Abstract

Electroless plating is a widely used methodology adopted by the industries as well as the academia as it permits the deposition of the metal onto various substrates like metals, ceramics or polymer devoid the usage of electricity. Extensive investigations have been conducted over the past decades on electroless plating owing to its continuous and uniform deposition of metal onto any substrate without electricity, which helps in augmenting the strength, structure and corrosion resistance of the substrate. Electroless plating helps in converting non-conductive substrate conductive by metalizing the substrate, wherein the metallic layer is deposited onto the substrate. Platings can be specifically tailored for realizing coveted properties by selecting the composition for versatile engineering applications extending from electronics to automobiles to avionics. This review article enumerates the various metallic electroless plating like nickel, copper, gold and silver with respect to copious substrates like metals, ceramics and polymers for above-mentioned engineering applications.

Graphical Abstract

Keywords

Electroless coating Non-electrolytic deposition Engineering applications Metallic Non-metallic Polymers 

Notes

Acknowledgement

The authors would like to thank Dr. Hina Gokhale, Vice Chancellor, Defence Institute of Advanced Technology (DU), Pune for the support. Authors also acknowledge Mr. Ramdayal, Prakash Gore, Ravi Magisetty and Ankit Malik for their continuous technical support during the preparation of the manuscript.

References

  1. 1.
    Faraji S, Rahim A A, Mohamed N, Sipaut C S, and Raja B, Mater Chem Phys 129 (2011) 1063.Google Scholar
  2. 2.
    Faraji S, Rahim A A, Mohamed N, and Sipaut C S, Surf Coat Technology 206 (2011) 1259.Google Scholar
  3. 3.
    Faraji S, Faraji A H, and Noori S R, Mater Des 54 (2014) 570.Google Scholar
  4. 4.
    Sonia T S, Mini P A, Nandhini R, Sujith K, Avinash B, Nair S V, and Subramanian K R V, Bull Mater Sci 36 (2013) 547.Google Scholar
  5. 5.
    Faraji S, Ani F N, Renew Sustain Energy Rev 42 (2015) 823.Google Scholar
  6. 6.
    Reade G W, Kerr C, Barker B D, and Walsh F C, Trans Inst Met Finish 76 (1998) 149.Google Scholar
  7. 7.
    Kerr C, Barker B D, and Walsh F C, Trans Inst Met Finish 75 (1997) 81.Google Scholar
  8. 8.
    Nahle A H, Kerr C, Barker B D, and Walsh F C, Trans Inst Met Finish 76 (1998) 29.Google Scholar
  9. 9.
    Kerr C, Court S, Barker B D, and Walsh F C, Surf Coat Technol 202 (2008) 5092.Google Scholar
  10. 10.
    Mallory G O, and Hajdu J B, Electroless Plating Fundamentals & Applications, American Electroplaters and Surface Finisher Society, New York (1990).Google Scholar
  11. 11.
    Riedel W, Electroless Nickel Plating, ASM International, Finishing Publications, Materials Park (1991).Google Scholar
  12. 12.
    Court S, Kerr C, Ponce de León C, Smith J R, Barker B D, and Walsh F C, Trans Inst Met Finish 95 (2017) 97.Google Scholar
  13. 13.
    Oraon B, Majumdar G, and Ghosh B, Mater Des 27 (2006)1035.Google Scholar
  14. 14.
    Li N, The Applied Technology of Electroless Plating, Beijing: Chemical Engineering Publisher; (2003).Google Scholar
  15. 15.
    Tummala R, Guduru R K, and Mohanty P S, J Power Sources 209 (2012) 44.Google Scholar
  16. 16.
    Zheng C, Qian W, Cui C, Xu G, Zhao M, and Tian G, J Nat Gas Chem 21 (2012) 233.Google Scholar
  17. 17.
    Dong X, Wang J, Wang J, Chan-Park M B, Li X, and Wang L, Mater Chem Phys 134 (2012) 576.Google Scholar
  18. 18.
    Li Y, Xie H, Li J, and Wang J, Mater Letter 102–103 (2013) 30.Google Scholar
  19. 19.
    Zhang S., Li Y, and Pan N., J Power Sources 206 (2012) 476.Google Scholar
  20. 20.
    Walsh F C, and Ponce de Leon C, Trans Inst Met Finish 92 (2014) 83.Google Scholar
  21. 21.
    Faraji S, Electroless Copper Composite Coatings Reinforced with Silicon Carbide and Graphite Particles, Pinang: UniversitiSains Malaysia (2011).Google Scholar
  22. 22.
    Kumar A, Kumar M, Singh A, Kumar S, and Kumar D, Micro Electr Eng 87 (2010) 286.Google Scholar
  23. 23.
    Jin J-G, Lee S-K, and Kim Y-H, Thin Solid Films 466 (2004) 272.Google Scholar
  24. 24.
    Sharma R, Agarwal R C, and Agarwal V, Appl Surf Sci 252 (2006) 8487.Google Scholar
  25. 25.
    Li D, Goodwin K, and Yang C-L, J Mater Sci 43 (2008) 7121.Google Scholar
  26. 26.
    A. Wurtz, C R Acad Sci 18 (1844) 702.Google Scholar
  27. 27.
    Brenner A, and Ridell G, J Res Natl Bur Stand 37 (1946) 1725.Google Scholar
  28. 28.
    Bergstrom E A, Surface metalizing method, US Patent 2702253 (1955).Google Scholar
  29. 29.
    Gomez J, and Kalu E E, J Power Sources 230 (2013) 218.Google Scholar
  30. 30.
    Choi J, Sauer G, Nielsch K, Wehrspohn R B, and Gosele U, Chem Mater 15 (2003) 776.Google Scholar
  31. 31.
    Juarez B H, Rubio S, Sanchez-Dehesa J, and Lopez C, Adv Mater 14 (2002) 1486.Google Scholar
  32. 32.
    Juarez B H, Ibisate M, Palacios J M, and Lopez C, Adv Mater 15 (2003) 319.Google Scholar
  33. 33.
    Yabu H, Hirai Y, and Shimomura M, Langmuir 22 (2006) 9760.Google Scholar
  34. 34.
    J.E. Gray, and B. Luan, J Alloys Compd 336 (2002) 88.Google Scholar
  35. 35.
    Osaka T, Okinaka Y, Sasano J, and Kato M, Sci Technol Adv Mater 7 (2006) 425.Google Scholar
  36. 36.
    Guo K W, Recent Pat Corros Sci 2 (2010) 13.Google Scholar
  37. 37.
    Sahoo P, and Das S K, Mater Des 32 (2011) 1760.Google Scholar
  38. 38.
    Sudagar J, Lian J, and Sha W, J Alloys Compd (2013). http://dx.doi.org/10.1016/j.jallcom.2013.03.107.
  39. 39.
    Shacham-Diamand Y, Osaka T, Okinaka Y, Sugiyama A, and Dubin V, Microelectron Eng 132 (2014) 35.Google Scholar
  40. 40.
    Olivera S, Muralidhara H B, Venkatesh K, Gopalakrishna K, and Vivek C S, J Mater Sci 51 (2016) 3657.Google Scholar
  41. 41.
    Loto C A, Silicon 8 (2016) 177.Google Scholar
  42. 42.
    Delaunois F, Petitjean J P, Lienard P, and Jacob-Duliere M, Surf Coat Technol 124 (2000) 201.Google Scholar
  43. 43.
    Ohno I, Wakabayashi O, and Haruyama S, J. Electrochem Soc 132 (1985) 2323.Google Scholar
  44. 44.
    Ashassi-Sorkhabi H, Dolati H, Parvini-Ahmadi N, and Manzoori J, Appl Surf Sci 185 (2002) 155.Google Scholar
  45. 45.
    Li Q, Yang X, Zhang L, Wang J, and Chen B, J Alloys Compd 482 (2009) 339.Google Scholar
  46. 46.
    Ashassi-Sorkhabi H, and Rafizadeh S H, Surf Coat Technol 176 (2004) 318.Google Scholar
  47. 47.
    Yan M, Ying H G, Ma T Y, and Luo W, Appl Surf Sci 255 (2008) 2176.Google Scholar
  48. 48.
    Tian J, Liu X, Wang J, Wang X, and Yin Y, Mater Chem Phys 124 (2010) 751.Google Scholar
  49. 49.
    Przyluski J, Kasprzak M, and BieliiSki J, Surf Coat Technol 31 (1987) 203.Google Scholar
  50. 50.
    Young J F, Gillard R D, and Wilkinson G, J Chem society 0 (1964) 5176.Google Scholar
  51. 51.
    Barker B D, Surf Technol 12 (1981) 77.Google Scholar
  52. 52.
    Lambert M R, and Duquette D J, Thin Solid Films 177 (1989) 207.Google Scholar
  53. 53.
    Keping H, and Li Fang J, Met Finish 1997.Google Scholar
  54. 54.
    Kerr C, Barker D and Walsh F, Trans Inst Met Finish 79 (2001) 41.Google Scholar
  55. 55.
    Torres F, Rios D, Moreno C, Becerra V, and Elguezabal A, Int J Hydrogen Energy 37 (2012) 10743.Google Scholar
  56. 56.
    Low C T J, and Walsh F C, in Encyclopedia of Advanced Tribology (ed) Wang L, Springer, Berlin (2011).Google Scholar
  57. 57.
    Gu C, Lian J, Li G, Niu L, and Jiang G, J Alloys Compd 391 (2005) 104.Google Scholar
  58. 58.
    Liu Z, and Gao W, Surf Coat Technol 200 (2006) 3553.Google Scholar
  59. 59.
    Correa E, Zuleta A A, Guerra L, Gomez M A, Castano J G, Echeverria F, Liu H, Skeldon P, and Thompson G E, Wear 305 (2013) 115.Google Scholar
  60. 60.
    Zhang W X, Huang N, He J G, Jiang Z H, Jiang Q, and Lian J S, Appl Surf Sci 253 (2007) 5116.Google Scholar
  61. 61.
    Ezhilselvi V, Balaraju J N, and Subramanian S, Surf Coat Technol 325 (2017) 270.Google Scholar
  62. 62.
    Shun-Yi J, Jeou-Long L, Hung-Bin L, Hung-Hua S, Chang-Ying O, and Ming-Der G, J Taiwan Inst Chem Eng 68 (2016) 496.Google Scholar
  63. 63.
    Iranipour N, Azari Khosroshahi R, and Parvini Ahmadi N, Surf Coat Technol 205 (2010) 2281.Google Scholar
  64. 64.
    Kim D, Aoki K, and Takano O, J Electrochem Soc 142 (1995) 3763.Google Scholar
  65. 65.
    Zhang X, and Zhang J, RSC Adv 6 (2016) 30695.Google Scholar
  66. 66.
    Saxena V, Uma Rani R, and Sharma A K, Surf Coat Technol 201 (2006) 855.Google Scholar
  67. 67.
    Selvakumar A, Perumalraj R, Jeevananthan P N R, Archana S, and Sudagar J, Surf Eng 32 (2016) 338.Google Scholar
  68. 68.
    Nageswara Rao N B S, Jog R H, Badrinarayanan S, Mandale A B, and Sinha A P B, Surf Coat Technol 30 (1987) 137.Google Scholar
  69. 69.
    Lee D N, and Hur K, Scripta Materialia 4012 (1999) 1333.Google Scholar
  70. 70.
    Domínguez-Ríos C, Hurtado-Macias A, Torres-Sánchez R, Ramos M A, and González-Hernández J, Ind Eng Chem Res 51 (2012) 7762.Google Scholar
  71. 71.
    Mccormack J F, Polichette J, Schneble Jr W, Williamson J D, and Zebliskv R J, Metallization of Insulating Substrate, US Patent 3672986 (1972).Google Scholar
  72. 72.
    Ritter G, McHugh P, Wilson G, and Ritzdorf T, Solid State Electron 44 (2000) 797.Google Scholar
  73. 73.
    Cunningham J A, Semicond. Int. 23 (2000) 97.Google Scholar
  74. 74.
    Wang F, Arai S, and Endo M, Electrochem Commun 6 (2004) 1042.Google Scholar
  75. 75.
    Byeon J H, and Kim J W, J Colloid Interface Sci 348 (2010) 649.Google Scholar
  76. 76.
    Touir R, Larhzil H, Ebn Touhami M, Cherkaoui M, and Chassaing E, J. Appl Electrochem 36 (2006) 69.Google Scholar
  77. 77.
    Guo R H, Jiang S Q, Yuen C W M, and Ng M C F, J. Mater Sci Mater Electron 20 (2008) 33.Google Scholar
  78. 78.
    Xueping G, Yating W, Lei L, Bin S H, and Wenbin H, J. Alloys Compd 455 (2008) 308.Google Scholar
  79. 79.
    Xueping G, Yating W, Lei L, Bin S H, and Wenbin H, Surf Coat Technol 201 (2007) 7018.Google Scholar
  80. 80.
    Afzali A, Mottaghitalab V, Motlagh M S, and Haghi A K, Korean J Chem Eng 27(4) (2010) 1145.Google Scholar
  81. 81.
    Zhao H, Huang Z, and Cui J, Microelectron Eng 85 (2008) 253.Google Scholar
  82. 82.
    Zhao H, Huang Z and Cuia J, J Mater Process Technol 203 (2008) 310.Google Scholar
  83. 83.
    Lantasova Y, Palmansa R, and Maexb K, Microelectron Eng 50 (2000) 441.Google Scholar
  84. 84.
    Patterson J C, Ni Dheasuna C, Barrett J, Spalding T R, OReilly M, Jiang X, and Crean G M, Appl Surf Sci 91 (1995) 124.Google Scholar
  85. 85.
    Kozlov A S, Thirumalai P, and Narasimhan D, Electroless Silver Plating, US Patent 6387542B1 (2002) 1.Google Scholar
  86. 86.
    Nakanishi K, Kagaku no Ryoiki, 4 (1950) 604.Google Scholar
  87. 87.
    Liebig B, Ann Chem Phar XlV 140 (1835).Google Scholar
  88. 88.
    Brevnov D A, Olson T S, Lopez G P, and Atanassov P, J Phys Chem B 108 (2004) 17531.Google Scholar
  89. 89.
    Shu J, Grandjean B P A, Ghali E, and Kaliaguine S, J Membr Sci 77 (1993) 181.Google Scholar
  90. 90.
    Xu X, Luo X, Zhuang H, Li W, and Zhang B, Mater Lett 57 (2003) 3987.Google Scholar
  91. 91.
    Hai H T, Ahn J G, Kim D J, Lee J R, Chung H S, and Kim C O, Surf Coat Technol 201 (2006) 3788.Google Scholar
  92. 92.
    Hasegawa K, Murakami K, Nakajima S, Takahashi A, and Yamamoto H, Electroless Gold plating solution and method for electroless gold plating, EP Patent 1338675 A1 (2003).Google Scholar
  93. 93.
    Uyemura C & Co, Ltd, Electroless gold plating bath, EP0618307 A1 (1994).Google Scholar
  94. 94.
    Lien W, Huang P, Shi-Chang T, Chia-Hsiang C, Shih-Ming L, and Wen-Chang L, Appl Surf Sci 258 (2012) 2246.Google Scholar
  95. 95.
    Li-Ming A, Andy Hor T S, Guo-Qin X, Chih-hang T, Zhao S, and Wang J L S, Chem Mater 11 (1999) 2115.Google Scholar
  96. 96.
    Yadav R, and Balasubramanian K, RSC Adv 5 (2015) 24990.Google Scholar
  97. 97.
    Lam P, Kumar K, Wnek G E, and Przybyciena T M, Electrochem Soc 146 (1999) 2517.Google Scholar
  98. 98.
    Pacheco Tanaka D A, Llosa Tanco M A, Niwa S, and Wakui Y, J Membr Sci 247 (2005) 21.Google Scholar
  99. 99.
    Fernandez M, Martinez-Duart J M, and Albella J M, J Phys. Chem Solids 46 (1985) 945.Google Scholar
  100. 100.
    Osaka T, Nagasaka H and Goto F, J Electrochem Soc 127 (1980) 2343.Google Scholar
  101. 101.
    Caturla F, Molina F, Molina-Sabio M, Rodríguez-Reinoso F, and Esteban A, J Electrochem Soc 142 (1995) 4084.Google Scholar
  102. 102.
    Zhang Q, Wu M, and Zhao W, Surf Coat Technol 192 (2005) 213.Google Scholar
  103. 103.
    You J B, Kim S Y, Park Y J, Ko Y G, and Gap Im S, Langmuir 30 (2014) 916.Google Scholar
  104. 104.
    Yoshiki H, Alexandruk V, Hashimoto K, and Fujishima A, J Electrochem Soc 141 (1994).Google Scholar
  105. 105.
    Chatterjee B, surf technol 23 (1984) 333.Google Scholar
  106. 106.
    Moon J H, Kim K H, Choi H W, Lee S W, and Park S J, Ultramicroscopy 108 (2008) 1307.Google Scholar
  107. 107.
    Xu C, Zhou R, Chen H, Hou X, Liu G, and Liu Y, J Mater Sci Mater Electron 25 (2014) 4638.Google Scholar
  108. 108.
    Li Q, Fan S, Han W, Sun C, and Liang W, Jpn J Appl Phys 36 (1997) 501.Google Scholar
  109. 109.
    Wang F, Arai S, and Endo M, Carbon 43 (2005) 1716.Google Scholar
  110. 110.
    Chi-Yuan H, and Jui-Fen P, Eur Polym J 34 (1998) 261.Google Scholar
  111. 111.
    Tzeng S-S, and Chang F-Y, Mater Sci Eng A302 (2001) 258.Google Scholar
  112. 112.
    Kar K K, and Sathiyamoorthy D, J Mater Process Technol 209 (2009) 3022.Google Scholar
  113. 113.
    Bazargan A M, Ghashghai S, Keyanpour-rad M, and Ganji M E, RSC Adv 2 (2012) 1842.Google Scholar
  114. 114.
    Hajjari E, Divandari M, and Mirhabibi A R, Iran J Mater Sci Eng 1 (2004) 43.Google Scholar
  115. 115.
    Kimura M, Yamagiwa H, Asakawa D, Noguchi M, Kurashina T, Fukawa T, and Shirai H, Appl Mater Interfaces 2 (2010) 3714.Google Scholar
  116. 116.
    Fatema U K, and Gotoh Y, Surf Coat Technol 206 (2012) 3472.Google Scholar
  117. 117.
    Arora R, Singh N, Balasubramanian K, and Alegaonkar P, RSC Adv 4 (2014) 50614.Google Scholar
  118. 118.
    Qing-hua H U, Xi-tang W, Hao C, and Zhou-fu W, New Carbon Materials 27 (2012) 35.Google Scholar
  119. 119.
    Jiang S Q, Kan C W, Yuen C W M, and Wong W K, J Appl Polym Sci 108 (2008) 2630.Google Scholar
  120. 120.
    Kim B C, Innis P C, Wallace G G, Low C T J, Walsh F C, Cho W J, and Yu K U, Prog Org Coat 76 (2013) 1296.Google Scholar
  121. 121.
    Ochanda F, and Jones W E, Langmuir 21 (2005) 10791.Google Scholar
  122. 122.
    Ochanda F, and Jones W E, Langmuir 23 (2007) 795.Google Scholar
  123. 123.
    Chiu Y-J, Chi M-H, Liu Y-H, and Chen J-T, Macromol Mater Eng (2016).Google Scholar
  124. 124.
    Zhao C, and Wang J, Phys Status Solidi A 211 (2014) 2878.Google Scholar
  125. 125.
    Inagaki N, Tasaka S, Narushima K, and Mochizuki K, Macromol 32 (1999) 8566.Google Scholar
  126. 126.
    Feng Y, and Yuan H, J Mater Sci 39 (2004) 3241.Google Scholar
  127. 127.
    Oh Y, Suh D, Kim Y, Lee E, Mok J S, Choi J, and Baik S, Nanotechnology 19 (2008) 495602.Google Scholar
  128. 128.
    Zhao Y, Sun L, Xi M, Feng Q, Jiang C, and Fong H, Appl Mater Interfaces 6 (2014) 5759.Google Scholar
  129. 129.
    Ma X, Lun N, and Wen S, Diamond Relat Mater 14 (2005) 68.Google Scholar
  130. 130.
    Ma X, Li X, Lun N, and Wen S, Mater Chem Phys 97 (2006) 351.Google Scholar
  131. 131.
    Little B K, Li Y, Cammarata V, Broughton R, and Mills G, Appl Mater Interfaces 3 (2011) 1965.Google Scholar
  132. 132.
    Flavel B S, Yu J, Ellis A V, and Shapter J G, Electrochim Acta 54 (2009) 3191.Google Scholar
  133. 133.
    Shu J, Grandjean B P A, and Kaliaguine S, Ind Eng Chem Res 36 (1997) 1632.Google Scholar
  134. 134.
    Kerr C, and Walsh F C, Trans Inst Met Finish 79 (2001) 41.Google Scholar
  135. 135.
    Loos J S, and Ter Haar B A, Thin Solid Films 188 (1990) 247.Google Scholar
  136. 136.
    Ye Y, and Guo T, Appl Surf Sci, 264 (2013) 593.Google Scholar
  137. 137.
    Li Y, Liu Z, Jiang Y, Ben de Glee, Li D, and Zeng J, J Mater Sci 53 (2017) 479.Google Scholar
  138. 138.
    Liu D G, Mai Y J, Sun J, Luan Z J, Shi W C, Luo L M, Li H, and Wu Y C, Ceram Int 43 (2017) 13133.Google Scholar
  139. 139.
    Rohan J F, O’Riordan G, and Boardman J, Appl Surf Sci 185 (2002) 289.Google Scholar
  140. 140.
    Ranganatha S, Venkatesha T V, and Vathsala K, Ind Eng Chem Res 51 (2012) 7932.Google Scholar
  141. 141.
    Katza A, Redlich M, Rapoport L, Wagner H D, and Tennea R, Tribol Lett 21 (2006) 135.Google Scholar
  142. 142.
    Yang Y A, Wei Y B, Loo B H, and Yao J N, J Electroanal Chem 462 (1999) 259.Google Scholar
  143. 143.
    John S, Shanmugam N V, Srinivasan K N, Selvam M, and Shenoi B A, Surf Technol 20 (1983) 331.Google Scholar
  144. 144.
    Sharma A K, Suresh M R, Bhojraj H, Narayanamurthy H, and Sahu R P, Met Finish 96 (1998) 20.Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  1. 1.Structural Composite Fabrication Laboratory, Department of Metallurgical & Materials Engineering, Defence Institute of Advanced Technology (DU)Ministry of DefenceGirinagarIndia

Personalised recommendations