Transactions of the Indian Institute of Metals

, Volume 71, Issue 12, pp 2933–2944 | Cite as

Microstructure, Properties and Corrosion Characterization of Welded Joint for Composite Pipe Using a Novel Welding Process

  • Bensheng Huang
  • Quan Chen
  • Xing Zhao
  • Rongfu Zhang
  • Yao Zhu
Technical Paper


In this paper, a novel process welding for composite pipe, firstly overlaid by SMAW in composite pipe end and subsequently butted by TIG, can greatly improve the joints' comprehensive properties. Mechanical, corrosion tests and microstructure observation were carried out on welded joints. The results show that base X65 is composed of pearlite and ferrite and the weld is composed of dendritic austenite. The microstructure of HAZ in X65 has an upper bainite with coarse grains. The overlaying layer contains single-phase dendritic austenite, which has an apparent phenomenon of competitive growth similar to the weld, with solid subgrain boundary, solidified grain boundary and migrated grain boundary. By comparing the conventional welding process with the novel welding process, the welded joint shows better properties in mechanics and corrosion, showing the advantages in composite pipe.


Bimetal composite pipe Tube end overlaying Ni-based alloy Novel welding process Microstructure and properties 



This study was financially supported by the Key Laboratory of Ministry of Education of Oil & Gas Equipment (Fund Number OGE201402-02) and Key Laboratory of Material of Oil & Gas of Sichuan Provincial Education Department (Project Number X151516KCL01).


  1. 1.
    Reformatskaya I I, Zav’Yalov V V, Rodionova I G, Podobaev A N, and Ashcheulova I I, Prot Met Phys Chem + 36 (2000) 46.CrossRefGoogle Scholar
  2. 2.
    Spencc M A, and Roscoe C V, Oil Gas J 97 (1999) 80.Google Scholar
  3. 3.
    Li F G, Wei B, Zhao X H, Shao X D, and Cai R, in International Conference on Pipelines and Trenchless Technology (2013), p 935.Google Scholar
  4. 4.
    Chen Z C, Ikeda K, Murakami T, Takeda T, and Xie J X, J Mater Process Tech 137 (2003) 10.CrossRefGoogle Scholar
  5. 5.
    Zhang Z P, Xu W C, and Shan D B, Procedia Engineering 81 (2014) 2024.CrossRefGoogle Scholar
  6. 6.
    Bahadori A, in Essentials of Coating, Painting, and Lining for the Oil, Gas, and Petrochemical Industries (2015), p 227.CrossRefGoogle Scholar
  7. 7.
    Hou J, Peng Q J, Takeda Y, Kuniya J, Shoji T, Wang J Q, Han E-H, and Ke W, J Mater Sci 45 (2010) 5332.CrossRefGoogle Scholar
  8. 8.
    Lundin C D, Weld J 61 (1982) S58.Google Scholar
  9. 9.
    Deng H D, and Zeng S P, Anti-Corros Method M 61 (2014) 380.CrossRefGoogle Scholar
  10. 10.
    Chen H, Ma H Z, Chen X M, Jiang S F, and Wang H J, J Fail Anal Prev 15 (2015) 563.CrossRefGoogle Scholar
  11. 11.
    Huang B S, Chen P, Zhang F R, Gong C L, Yuan P, Dai L, and Hu M D, Mater Rev 30 (2016) 101.Google Scholar
  12. 12.
    Rao N V, Reddy G M, and Nagarjuna S, Mater Design 32 (2011) 2496.CrossRefGoogle Scholar
  13. 13.
    Rozmus górnikowska M, Cieniek Ł, Blicharski M, and Kusiński J, Arch Metall Mater 59 (2014) 1081.CrossRefGoogle Scholar
  14. 14.
    Zahrani E M, and Alfantazi A M, Metall Mater Trans A 44A (2013) 4674.Google Scholar
  15. 15.
    El-Danaf E, Baig M, Almajid A, Alshalfan W, Al-Mojil M, and Al-Shahrani S, Mater Design 47 (2013) 529.CrossRefGoogle Scholar
  16. 16.
    Sadeghian M, Shamanian M, and Shafyei A, Mater Design 60 (2014) 678.CrossRefGoogle Scholar
  17. 17.
    Mendoza B I, Maldonado Z C, Albiter HA, Robles P E, Ocean Eng 2 (2010) 520.Google Scholar
  18. 18.
    Nelson D E, Iii W A B, and Lippold J C, Metallography 18 (1985) 215.CrossRefGoogle Scholar
  19. 19.
    Kim S, Kang S Y, Lee S, Oh S, Kwon S J, Kim O H, and Hong J H, Metall Mater Trans A 31 (2000) 1107.CrossRefGoogle Scholar
  20. 20.
    Ming H L, Zhang Z M, Wang J Q, Han E-H, and Ke W, Mater Charact 97 (2014) 101.CrossRefGoogle Scholar
  21. 21.
    Hajiannia I, Shamanian M, and Kasiri M, Mater Design 50 (2013) 566.CrossRefGoogle Scholar
  22. 22.
    Naffakh H, Shamanian M, and Ashrafizadeh F, J Mater Process Tech 209 (2009) 3628.CrossRefGoogle Scholar
  23. 23.
    Zhao X, Liu Y, Zha X D, Cheng L M, Ma Y C, and Liu K, Acta MetallL Sin-Engl 50 (2014) 1377.Google Scholar
  24. 24.
    Glover A G, Mcgrath J T, Tinkler M J, and Weatherly G C, Weld J 56 (1977) 225.Google Scholar
  25. 25.
    Kou S, Welding Metallurgy, Second edition, Wiley, Hoboken (2003).Google Scholar
  26. 26.
    Lippold J C, Clark W A T, and Tumuluru M, An Investigation of Weld Metal Interfaces, The Metal Science of Joining, The Metals, Minerals and Materials Society, Warrendale (1992), p 141.Google Scholar
  27. 27.
    Dupont J N, Lippold J C, and Kiser S D, Welding Metallurgy and Weldability of Nickel-Base Alloys, Wiley, Hoboken (2009), p 73.CrossRefGoogle Scholar
  28. 28.
    Øien V, Effect of Electron Beam Welding on the Microstructure and Mechanical Properties of Nickel Alloys, Master’s Thesis, University of Stavanger (2014).Google Scholar
  29. 29.
    ASM International, ASM Handbook: Volume 3 alloy phase diagrams. The material international company (1992).Google Scholar
  30. 30.
    Naffakh H, Shamanian M, and Ashrafizadeh F, J Mater Process Tech 209 (2009) 3628.CrossRefGoogle Scholar
  31. 31.
    Arivazhagan N, Singh S, Prakash S, and Reddy G M, Mater Design 32 (2011) 3036.CrossRefGoogle Scholar
  32. 32.
    Zaczek Z, and Cwiek J, Weld J 72 (1993) S37.Google Scholar
  33. 33.
    Hall E O, Nature 173 (1954) 948.CrossRefGoogle Scholar
  34. 34.
    Ram G D J, Reddy A V, Rao K P, Reddy G M, and Sundar J K S, J Mater Process Tech 167 (2005) 73.CrossRefGoogle Scholar
  35. 35.
    Ahmad Z, Principles of Corrosion Engineering and Corrosion Control, Butterworth-Heinemann, Oxford (2006).Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  • Bensheng Huang
    • 1
  • Quan Chen
    • 1
  • Xing Zhao
    • 1
  • Rongfu Zhang
    • 1
  • Yao Zhu
    • 1
  1. 1.School of Materials Science and EngineeringSouthwest Petroleum UniversityChengduChina

Personalised recommendations