Advertisement

Transactions of the Indian Institute of Metals

, Volume 71, Issue 12, pp 2903–2918 | Cite as

An Investigation on High-Temperature Oxidation and Hot Corrosion Resistance Behavior of Coated TLP (Transient Liquid Phase)-Bonded IN738-LC

  • Reyhaneh Sahraeian
  • Hamid Omidvar
  • S. M. Mehdi Hadavi
  • Sajad Shakerin
  • Vahid Maleki
Technical Paper
  • 56 Downloads

Abstract

Despite all achievements to improve nickel-based superalloy, these classes of alloys are still prone to degradation via high-temperature oxidation and hot corrosion. Repairing damaged parts could decrease the life cycle, cost of equipment, and a transient liquid phase (TLP) bonding is a favorable method that has successfully been used for this purpose. One way to increase the lifetime of the repaired parts and the main body is to utilize protective coating. In the current study, aluminized coating was applied on IN738-LC which was first bonded by TLP process. Coating performance on the joint centerline compared to the other parts of the sample was investigated using a scanning electron microscope (SEM and FESEM) and X-ray diffraction method (XRD). The oxidation test result showed that coating provided less protection on the joint centerline due to coating’s chemical composition difference in this area: particularly Fe and Cr. XRD results showed that at the initial time of oxidation, all (α, γ, δ and θ)-Al2O3 were formed and by prolonged exposure were transformed to α-Al2O3. The hot corrosion test also proved that the joint centerline and the diffusion-affected zone were less resistant to the corrosion attack of 3Na2SO4 + NaCl salts and severity of damage in these zones were clearly distinguished from microscopic images.

Keywords

High-temperature oxidation Hot corrosion Pack cementation TLP bonding Ni-based superalloy 

Notes

Acknowledgements

This work was financially supported by the Sarkhon and Gheshm gas treating Company under Contract No. 300662.

Compliance with Ethical Standards

Conflict of interest

Authors declare that the contents have no conflict of interest toward any individual or organization.

References

  1. 1.
    Chen J, Rogers P, and Little J, Oxid Met 47 (1997) 381.CrossRefGoogle Scholar
  2. 2.
    Pomeroy M, Mater Des 26 (2005) 223.CrossRefGoogle Scholar
  3. 3.
    Rybnikov A, Getsov L, and Leontiev S, Microscopy Microanal 11 (2005) 222.CrossRefGoogle Scholar
  4. 4.
    Bewlay B P, and Jackson M R, Method for Replacing Blade Tips of Directionally Solidified and Single Crystal Turbine Blades, Google Patents (1998).Google Scholar
  5. 5.
    Fraser M J, and Legros R D, Repaired Turbine Blade and Method of Repairing, Google Patents (1991).Google Scholar
  6. 6.
    Zelahy J W, and Raeburn Jr A, Method and replacement member for repairing a gas turbine engine blade member, Google Patents (1982).Google Scholar
  7. 7.
    Richter K-H, and Knott U, Methods of Repairing Worn Blade Tips of Compressor and Turbine Blades, Google Patents (1999).Google Scholar
  8. 8.
    Jalilvand V, Omidvar H, Shakeri H, and Rahimipour M, Mater Charact, 75 (2013) 20.CrossRefGoogle Scholar
  9. 9.
    Indacochea J, Smith J, Litko K, Karell E, and Rarez A, Oxid Met, 55 (2001) 1.CrossRefGoogle Scholar
  10. 10.
    Pouranvari M, Ekrami A, and Kokabi A, J Alloys Compd, 469 (2009) 270.CrossRefGoogle Scholar
  11. 11.
    Lee J-W, and Kuo Y-C, Surf Coat Technol, 200 (2005) 1225.CrossRefGoogle Scholar
  12. 12.
    Ren X, Wang F, and Wang X, Surf Coat Technol, 198 (2005) 425.CrossRefGoogle Scholar
  13. 13.
    Zielińska M, Sieniawski J, Yavorska M, and Motyka M, Arch Metall Mater, 56 (2011) 193.CrossRefGoogle Scholar
  14. 14.
    Xiang Z, Burnell-Gray J, and Datta P, J Mater Sci, 36 (2001) 5673.CrossRefGoogle Scholar
  15. 15.
    Vialas N, and Monceau D, Oxid Met, 66 (2006) 155.CrossRefGoogle Scholar
  16. 16.
    Adebajo O, and Ojo O, Metall Mater Trans A, 48 (2017) 26.CrossRefGoogle Scholar
  17. 17.
    Sumner J, Aksoul Q, Delgado J, Potter A, and Gra S, Oxid Met, 87 (2017) 767.CrossRefGoogle Scholar
  18. 18.
    Shakerin S, Omidvar H, and Mirsalehi S E, Mater Des, 89 (2016) 611.CrossRefGoogle Scholar
  19. 19.
    Jalilvand V, Omidvar H, Rahimipour M, and Shakeri H, Mater Des (1980–2015), 52 (2013) 36.CrossRefGoogle Scholar
  20. 20.
    Bakhtiari R, Ekrami A, and Khan T, Mater Sci Eng A, 546 (2012) 291.CrossRefGoogle Scholar
  21. 21.
    Pouranvari M, Ekrami A, and Kokabi A, J Alloys Compd, 563 (2013) 143.CrossRefGoogle Scholar
  22. 22.
    Bradshaw A, Simms N, and Nicholls J, Surf Coat Technol, 216 (2013) 8.CrossRefGoogle Scholar
  23. 23.
    Bai C-Y, Luo Y-J, and Koo C-H, Surf Coat Technol, 183 (2004) 74.CrossRefGoogle Scholar
  24. 24.
    Steuer S, Piegert S, Frommherz M, Singer R F, and Scholz A, in Advanced Materials Research, Trans Tech Publications (2011).Google Scholar
  25. 25.
    Mosallaee M, Ekrami A, Ohsasa K, and Matsuura K, Metall Mater Trans A, 39 (2008) 2389.CrossRefGoogle Scholar
  26. 26.
    Bakhtiari R, Ekrami A, and Khan T, J Mater Eng Perform, 24 (2015) 1687.CrossRefGoogle Scholar
  27. 27.
    Schulz U, Menzebach M, Leyens C, and Yang Y Q, Surf Coat Technol, 146–147 (2001) 117. CrossRefGoogle Scholar
  28. 28.
    Vialas N, and Monceau D, Oxid Met, 66 (2006) 155.CrossRefGoogle Scholar
  29. 29.
    Tolpygo V, Murphy K, and Clarke D, Acta Mater, 56 (2008) 489.CrossRefGoogle Scholar
  30. 30.
    Pint B A, Haynes J A, and Zhang Y, Surf Coat Technol, 205 (2010) 1236.CrossRefGoogle Scholar
  31. 31.
    Nalin L, Degradation of Environmental Protection Coatings for Gas Turbine Materials, (2008).Google Scholar
  32. 32.
    Kim B G, Kim G M, and Kim C J, Scr Metall Mater, 33 (1995) 1117.CrossRefGoogle Scholar
  33. 33.
    Chen G, and Rühle M, Surf Coat Technol, 191 (2005) 263.CrossRefGoogle Scholar
  34. 34.
    Liu G-M, Li M-S, Nan D, and Zhou Y-C, Trans Nonferrous Met Soc China, 17 (2007) 595.CrossRefGoogle Scholar
  35. 35.
    Smyslov A, Nev’yantseva R, and Bybin A, Met Sci Heat Treat, 46 (2004) 349.CrossRefGoogle Scholar
  36. 36.
    Ma J, Jiang S M, Gong J, and Sun C, Corros Sci, 70 (2013) 29.CrossRefGoogle Scholar
  37. 37.
    Khajavi M, and Shariat M, Eng Fail Anal, 11 (2004) 589.CrossRefGoogle Scholar
  38. 38.
    Bürgel R, Mater Sci Technol, 2 (1986) 302.CrossRefGoogle Scholar
  39. 39.
    Zhang K, Liu M M, Liu S L, Sun C, and Wang F H, Corros Sci, 53 (2011) 1990.CrossRefGoogle Scholar
  40. 40.
    Liu P S, Liang K M, Zhou H Y, Gu S R, Sun X F, Guan H R, Jin T, and Yang K N, Surf Coat Technol, 145 (2001) 75.CrossRefGoogle Scholar
  41. 41.
    Sreedhar G, and Raja V S, Corros Sci, 52 (2010) 2592.CrossRefGoogle Scholar
  42. 42.
    Jiang S M, Li H Q, Ma J, Xu C Z, Gong J, and Sun C, Corros Sci, 52 (2010) 2316.CrossRefGoogle Scholar
  43. 43.
    Chan W, Evans H, Ponton C, Nicholls J, and Simms N, Mater High Temp, 17 (2000) 173.CrossRefGoogle Scholar
  44. 44.
    Chen W, Wu X, Marple B, and Patnaik P, Surf Coat Technol, 201 (2006) 1074.CrossRefGoogle Scholar
  45. 45.
    Lang E, Coatings for high temperature applications, (ed) Lang E, Applied Science Publishers (1984), 48 English Pounds, 442 pages, ISBN 0-85334-221-0, (1984).Google Scholar
  46. 46.
    Wu D, Jiang S, Fan Q, Gong J, and Sun C, Acta Metall Sin (English Letters), 27 (2014) 627.CrossRefGoogle Scholar
  47. 47.
    Malush R, Deb P, and Boone D, Surf Coat Technol, 36 (1988) 13.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  1. 1.Department of Mining and Metallurgical EngineeringAmirkabir University of Technology (Tehran Polytechnic)TehranIran
  2. 2.School of Materials Science and EngineeringMalek Ashtar University of TechnologyTehranIran

Personalised recommendations