Advertisement

Analysis of the Plastic Strain Distribution and Damage Accumulation During T-Shaped Equal Channel Angular Pressing

  • Mehdi Shaban Ghazani
  • Ali Fardi-Ilkhchy
  • Behzad Binesh
Technical Paper
  • 23 Downloads

Abstract

T-ECAP process is a reversion of equal channel angular pressing which employs T shaped die instead of L shaped die. In the present study, 2D finite element method was employed to evaluate the plastic deformation characteristics of Al6061 alloy during T-ECAP processing. Deformation homogeneity was analyzed in term of plastic strain distribution and compared with conventional ECAP process. In addition, strain rate distributions in deformation zone, damage accumulation in sample and pressing force required for T-ECAP process were analyzed. Results showed that the plastic strain distribution in sample after T-ECAP processing is not affected significantly with the variation of friction coefficient which is in contrast with conventional ECAP where the plastic strain is increased at the bottom side of sample by increasing friction between sample and die. Also in the case of T-ECAP process, it was observed that the maximum damage factor is decreased with increasing friction coefficient. The V shaped deformation zone has been detected in T-ECAP process and the pressing force has been found to increase with increasing friction.

Keywords

Finite element simulation Strain homogeneity Damage T-shaped ECAP 

References

  1. 1.
    Furukawa M, Horita Z, Nemoto M and Langdon T G, J Mat Sci 36 (2001) 2835.CrossRefGoogle Scholar
  2. 2.
    Saito Y, Utsunomiya H, Tsuji N and Sakai T, Acta Mater 47 (1999) 579.CrossRefGoogle Scholar
  3. 3.
    Sakai G, Nakamura K, Horita Z and Langdon T G, Mat Sci Eng A 406 (2005) 268.CrossRefGoogle Scholar
  4. 4.
    Zherebtsov S V, Salishchev G A, Galeyev R M, Valiakhmetov O R, Mironov S Y and Semiatin S L, Scripta Mater 51 (2004) 1147.CrossRefGoogle Scholar
  5. 5.
    Stolyarov V V, Beigel Y E, Orlov D V and Valiev R Z, Phy Met Metallography 99 (2005) 204.Google Scholar
  6. 6.
    Shin D H, Park J J, Kim Y S and Park K T, Mat Sci Eng A 328 (2002) 98.CrossRefGoogle Scholar
  7. 7.
    Rosochowski A, Rosochowska M and Olejnik L, J Mat Sci 48 (2013) 4557.CrossRefGoogle Scholar
  8. 8.
    Boroujeni S S and Saniee F, J Mat Sci 50 (2015) 3908.CrossRefGoogle Scholar
  9. 9.
    Valiev R Z and Langdon T G, Prog Mat Sci 51 (2006) 881.CrossRefGoogle Scholar
  10. 10.
    Park K T, Han S Y, Ahn B D, Shin D H, Lee Y K, and Um K K, Scripta Mater 51 (2004) 909.CrossRefGoogle Scholar
  11. 11.
    Suh J, Hernandez J, Letzig D, Golle R and Volk W, Mat Sci Eng A 650 (2016) 523.CrossRefGoogle Scholar
  12. 12.
    Kim H S, Kim W Y and Song K H, J Alloys Compound 536 (2012) 200.CrossRefGoogle Scholar
  13. 13.
    Chegini M, Fallahi A and Shaeri M H, Proc Mat Sci 11 (2015) 95.CrossRefGoogle Scholar
  14. 14.
    Ma A, Nishida Y, Suzuki K, Shigematsu I and Saito N, Scripta Mater 52 (2005) 433.CrossRefGoogle Scholar
  15. 15.
    Nakashima K, Horita Z, Nemoto M and Langdon T G, Mater Sci Eng A 281 (2000) 82.CrossRefGoogle Scholar
  16. 16.
    Ghazani M S and Eghbali B, Comp Mater Sci 74 (2013) 124.CrossRefGoogle Scholar
  17. 17.
    Nagasekhar A V and Kim H S, Met Mater Int 14 (2008) 565.CrossRefGoogle Scholar
  18. 18.
    Valiev R Z, Islamgaliev R K and Alexandrov I V, Prog Mater Sci 45 (2000) 103.CrossRefGoogle Scholar
  19. 19.
    Ghazani MS and Akbarpour MR, Trans Indian Inst Met 70 (2017) 2719.CrossRefGoogle Scholar
  20. 20.
    Djavanroodi F and Ebrahimi M, Mat Sci Eng A 527 (2010) 7593.CrossRefGoogle Scholar
  21. 21.
    Zhou J, Li L and Duszczyk J, J Mater Process Tech 134 (2003) 383.CrossRefGoogle Scholar
  22. 22.
    Nagasekhar A V and Kim H S, Comp Mater Sci 43 (2008) 1069.CrossRefGoogle Scholar
  23. 23.
    Yoon S C and Kim H S, Mat Sci Eng A 490 (2008) 438.CrossRefGoogle Scholar
  24. 24.
    Ghazani M S and Moslemi S, Trans Indian Inst Met 71 (2018) 971.CrossRefGoogle Scholar
  25. 25.
    Ma A, Jiang J, Saito N, Shigematsu I, Yuan Y, Yang D and Nishida Y, Mat Sci Eng A 513–514 (2009) 122.CrossRefGoogle Scholar
  26. 26.
    Cerri E, De Marco PP and Leo P, J Mater Process Tech 209 (2009) 1550.CrossRefGoogle Scholar
  27. 27.
    Kim HS, Seo MH and Hong SI, Mater Sci Eng A 291 (2000) 86.CrossRefGoogle Scholar
  28. 28.
    Ghazani M S and Vajd A, Trans Indian Inst Met 70 (2017) 1323.CrossRefGoogle Scholar
  29. 29.
    Basavaraj V P, Chakkingal U and Kumar T S P, J Mater Process Tech 209 (2009) 89.CrossRefGoogle Scholar
  30. 30.
    Basavaraj V P, Chakkingal U and Kumar T S P, Trans Indian Inst Met 61 (2008) 125.CrossRefGoogle Scholar
  31. 31.
    Figueiredo R B, Cetlin P R and Langdon T G, Mater Sci Eng A 518 (2009) 124.CrossRefGoogle Scholar
  32. 32.
    Luri R, Perez C J L, Salcedo D, Puertas I, Leon J, Perez I and Fuertes J P, J Mater Proc Technol 211 (2011) 48.CrossRefGoogle Scholar
  33. 33.
    Figueiredo R B, Cetlin P R and Langdon T G, Acta Mater 55 (2007) 4769.CrossRefGoogle Scholar
  34. 34.
    Ghazani M S and Eghbali B, Model Num Simul Mater Sci 3 (2013) 27.Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  • Mehdi Shaban Ghazani
    • 1
  • Ali Fardi-Ilkhchy
    • 1
  • Behzad Binesh
    • 1
  1. 1.Department of Materials Science EngineeringUniversity of BonabBonabIran

Personalised recommendations