Advertisement

Transactions of the Indian Institute of Metals

, Volume 71, Issue 10, pp 2541–2552 | Cite as

Processing of Cu–Al–Ni Alloy by Spray Atomization and Deposition Process

  • Ashish Agrawal
  • Ravindra Kumar Dube
Technical Paper
  • 34 Downloads

Abstract

The present work describes a new route for the preparation of Cu–Al–Ni alloy strips via spray atomization and deposition route. The route consists of atomizing liquid Cu–Al–Ni alloy with a jet of argon gas in a closed chamber, at a pressure of 1 MPa. The semi-solid Cu–Al–Ni droplets are subsequently collected on the steel substrate placed vertically below the liquid metal stream in the atomization chamber to form a three-dimensional preform. The deposit produced on the substrate contains ~ 5% porosity. The microstructural details of the spray deposited Cu–Al–Ni strips explains particularly the presence of porosity, formation of splats during the flight of spray casting and the associated microstructural evolution in Cu–Al–Ni spray deposit are explained.

Keywords

Spray atomization Spray deposition Cu–Al–Ni alloys Splat formation Solidification Strip 

Notes

Acknowledgements

This part of the research was carried out under the supervision of Dr. R.K. Dube and facilitated by Dr. S.K. Vajpai during the Master’s program of corresponding author (Ashish Agrawal) at Indian Institute of Technology, Kanpur, India. The authors would like to recall Mr. Sheelendra Agnihotri who helped in carrying out the experiments.

References

  1. 1.
    Humbeeck J V, Mater Sci Eng A 273 (1999) 134.CrossRefGoogle Scholar
  2. 2.
    Leu S S, Chen Y, and Jean R D, J Mater Sci 27 (1992) 2792.CrossRefGoogle Scholar
  3. 3.
    Roh D W, Kim J W, Cho T J, and Kim Y G, Mater Sci Eng A 136 (1991) 17.CrossRefGoogle Scholar
  4. 4.
    Miyazaki S, and Otsuka K, ISIJ Int 29 (1989) 353.CrossRefGoogle Scholar
  5. 5.
    Duerig T W, Albrecht J, and Gessinger G H, J Metals 34 (1982) 14.Google Scholar
  6. 6.
    Sure G N, and Brown L C, Metall Trans A 15 (1984) 1613.CrossRefGoogle Scholar
  7. 7.
    Oishi K, and Brown L C, Metall Trans A 2 (1971) 1971.Google Scholar
  8. 8.
    Mukunthan K, and Brown L C, Metall Trans A 19 (1988) 2921.CrossRefGoogle Scholar
  9. 9.
    Gama J L L, Dantas C C, Quadros N F, Ferreira R A S, and Yadava Y P, Metall Mater Trans A 37a (2006) 77.CrossRefGoogle Scholar
  10. 10.
    Abbass M K, Al-Kubaisy M M, and Adnan R S A, Eng Technol J 34 (2016) 2518.Google Scholar
  11. 11.
    Singer A, Method of forming composite metal strip, US Patent No. 3775156 (1973).Google Scholar
  12. 12.
    Lee J S, and Wayman C M, Trans Jpn Inst Metals 27 (1986) 584.CrossRefGoogle Scholar
  13. 13.
    Saud S N, Hamzah E, Abubakar T, Zamri M, and Tanemura M, J Therm Anal Calorim 118 (2014) 111.CrossRefGoogle Scholar
  14. 14.
    Saud S N, Bakar T A A, Hamzah E, and Ibrahim M K, Bahador A, Metall Mater Trans A 46A (2015) 3528.CrossRefGoogle Scholar
  15. 15.
    Abbass M K, Radhi M M, and Adnan R S A, in 5th International Conference of Materials Processing and Characterization (ICMPC 2016), Materials Today: Proceedings, vol 4 (2017) pp 224.Google Scholar
  16. 16.
    Tang S M, Chung C Y, and Liu W G, J Mater Process Technol 63 (1997) 307.CrossRefGoogle Scholar
  17. 17.
    Rodriguez P P, Ibarra A, Iza-Mendia A, Recarte V, Perez-Landazabal J I, San Juan J, and No M L, Mater Sci Eng A 378 (2004) 263.CrossRefGoogle Scholar
  18. 18.
    Xiao Z, Li Z, Fang M, Xiong S, Sheng X, and Zhou M, Mater Sci Eng A 488 (2008) 266.CrossRefGoogle Scholar
  19. 19.
    Ibarra A, Rodriguez P P, Recarte V, Perez-Landazabal J I, No M L, and San Juan J, Mater Sci Eng A 370 (2004) 492.CrossRefGoogle Scholar
  20. 20.
    Dericioglu A F, Ogel B, Bor S, in Materials Development and Processing—Bulk Amorphous Materials, Undercooling and Powder Metallurgy, (eds) Wood J V, Schultz L, and Herlach D M, vol 8, Wiley-VCH Verlag GmbH, Weinheim (2006),  https://doi.org/10.1002/3527607277.ch55.CrossRefGoogle Scholar
  21. 21.
    Vajpai S K, Dube R K, and Sharma M, J Mater Sci 44 (2009) 4334.CrossRefGoogle Scholar
  22. 22.
    Sharma M, Vajpai S K, and Dube R K, Metall Mater Trans A 41A (2010) 2905.CrossRefGoogle Scholar
  23. 23.
    Sharma M, Vajpai S K, and Dube R K, Powder Metall 54 (2011) 620.CrossRefGoogle Scholar
  24. 24.
    Vajpai S K, Dube R K, and Sangal S, Mater Sci Eng A 529 (2011) 378.CrossRefGoogle Scholar
  25. 25.
    Agrawal A, and Dube R K, J Alloys Compd 750 (2018) 235,  https://doi.org/10.1016/j.jallcom.2018.03.390 CrossRefGoogle Scholar
  26. 26.
    Singer A R E, Metals Mater 4 (1970) 246.Google Scholar
  27. 27.
    Singer A R E, J Inst Metals 100 (1972) 185.Google Scholar
  28. 28.
    Dube R K, Int Mater Rev 35 (1990) 253.CrossRefGoogle Scholar
  29. 29.
    Sahu K K, Dube R K, and Koria S C, Powder Metall 52 (2009) 135.CrossRefGoogle Scholar
  30. 30.
    Lavernia E J, and Wu Y, Spray Atomization and Deposition, Wiley, Chichester (1996).Google Scholar
  31. 31.
    Sari U, and Aksoy I, J Mater Process Technol 195 (2008) 920CrossRefGoogle Scholar
  32. 32.
    Annavarapu S, Apelian D, and Lawley A, Metall Trans A 21 (1990) 3237.CrossRefGoogle Scholar
  33. 33.
    Cava R D, Bolfarini C, Kiminami C S, Mazzer E M, Filho W J B, Gargarella P, and Eckert J, J Alloys Compd 615 (2014) S602.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  1. 1.Automation DivisionTata Steel LimitedJamshedpurIndia
  2. 2.Department of Materials Science and EngineeringIndian Institute of TechnologyKanpurIndia

Personalised recommendations