Advertisement

Transactions of the Indian Institute of Metals

, Volume 71, Issue 10, pp 2453–2463 | Cite as

Preparation of Industrial Manganese Compound from a Low-Grade Spessartine Ore by Hydrometallurgical Process

  • Alafara A. Baba
  • Aishat Y. Abdulkareem
  • Mustapha A. Raji
  • Kuranga I. Ayinla
  • Folahan A. Adekola
  • Rafiu B. Bale
  • Malay K. Ghosh
Technical Paper
  • 21 Downloads

Abstract

The increasing global demands for pure manganese in steel production and manganese compound as dietary additives, fertilizer, pigment, cells and fine chemicals production cannot be over-emphasized. Thus, continuous efforts in developing low cost and eco-friendly route for purifying the manganese ore to meet some defined industrial demands become paramount. Therefore, this study focused on reductive leaching and solvent extraction techniques for the purification of a Nigerian manganese ore containing admixture of spessartine (O96.00Mn24.00Al16.00Si24.00) and quartz (Si3.00O6.00). During leaching, parameters such as leachant concentration and reaction temperature on the extent of ore dissolution were examined accordingly for the establishment of extraction conditions. At optimal leaching conditions (1.5 mol/L H2SO4 + 0.2 g spent tea, 75 °C), 80.2% of the initial 10 g/L ore reacted within 120 min. The derived dissolution activation energy (Ea) of 35.5 kJ/mol supported the diffusion reaction mechanism. Thus, the leachate at optimal leaching was appropriately treated by alkaline precipitation and solvent extraction techniques using sodium hydroxide and (di-2-ethylhexyl) phosphoric acid (D2EHPA) respectively, to obtain pure manganese solution. The purified solution was further beneficiated to obtain manganese sulphate monohydrate (MnSO4.H2O, melting point = 692.4 °C: 47-304-7403) of high industrial value. The unleached residue (~ 19.8%) analyzed by XRD consisted of silicileous impurities (SiO2) which could serve as an important by-product for some defined industries.

Keywords

Spessartine ore Nigeria Manganese Manganese compound Reductive leaching Solvent extraction D2EHPA 

Notes

Acknowledgements

The authors are grateful to: Miranda Waldron of the Centre for Imaging & Analysis, University of Cape Town, South Africa for assisting with SEM & EDS analyses. Central Research Laboratories, University of Ilorin, Nigeria for assisting in aqueous metal analyses by AAS. Hydro & Electrometallurgy Department of the CSIR-Institute of Minerals and Materials Technology, Bhubaneswar-751013, India for their benevolence in supplying the D2EHPA extractant used in this study.

References

  1. 1.
    Long Y F, Lv X Y, Lv Y J, Li N Y, Su J, and Wen Y X, Kem Ind 64 (2015) 593.CrossRefGoogle Scholar
  2. 2.
    Wensheng Z, and Cheng C Y, Hydrometallurgy 89 (2007) 137.CrossRefGoogle Scholar
  3. 3.
    Ye O, Zhu H, Zhang L, Liu P, Chen G, and Peng J, RSC Adv 4 (2014) 58164.CrossRefGoogle Scholar
  4. 4.
    Zhang Y, You Z, Li G, and Jiang T, Hydrometallurgy 133, (2013) 126.CrossRefGoogle Scholar
  5. 5.
    Xike T, Xiaoxia W, Chao Y, Yujun L, Zhengbang P, and Yanxin W, Hydrometallurgy 100 (2010) 157.CrossRefGoogle Scholar
  6. 6.
    Nicolas J B, Edward P W, and Herve W, J Int Geosci 43 (2016), 25.Google Scholar
  7. 7.
    Nwabufo-Ene, Trammel Open files circ 12 (2006), 10.Google Scholar
  8. 8.
    Belyi A V, Pustoshilov P P, Gurevich Y L, Kadochnikova G G, and Ladygina V P, Appl Biochem Microbiol 42 (2006) 289.CrossRefGoogle Scholar
  9. 9.
    Ekmekyapar A, Celal A, Nizamettin D, Asim K, Ahmet B, and Kadim C, Russ J Non-Ferrous Met 53 (2012) 211.CrossRefGoogle Scholar
  10. 10.
    Tang Q, Zhong L, Wang S, Jin-zhong L, and Liu G, Trans Nonferrous Met Soc China 24 (2014) 861.CrossRefGoogle Scholar
  11. 11.
    Long Y, Su Jing Y X, Haifeng S, and Wen Y, Trans Tech Publ 699 (2013) 28.Google Scholar
  12. 12.
    Haifeng S, Yanxuan W, Fan W, Yingyun S, and Zhangfa T, Hydrometallurgy 93 (2008) 136.CrossRefGoogle Scholar
  13. 13.
    Ghosh M K, Harisprasad D, and Anand S, Trans Indian Inst Met 62 (2009) 551.CrossRefGoogle Scholar
  14. 14.
    Zhuo C, Guocai Z, and Yuna Z, Hydrometallurgy 96 (2009) 176.CrossRefGoogle Scholar
  15. 15.
    Zhang H, Zhu G, Yan H, Li T, and Feng X, Metall Mater Trans 44B (2013) 878.CrossRefGoogle Scholar
  16. 16.
    Gupta C K, and Mukherjee T K, Hydromettalurgy in Extraction Process. CRC Press, Boca Raton (1993), vol 2.Google Scholar
  17. 17.
    Wensheng Z, and Cheng C Y, Hydrometallurgy 89 (2007) 160.CrossRefGoogle Scholar
  18. 18.
    Sato T, and Nakamura T, J Min 101 (1985) 309.Google Scholar
  19. 19.
    Roberto P G, Javier M J, Alejandro U S, and Antonia M L, Sci Res 4 (2012) 526.Google Scholar
  20. 20.
    Valentina I, and Francesco V, Hydrometallurgy 129–130 (2012) 50.Google Scholar
  21. 21.
    Mehdilo A, Irannajad M, and Hojjati-Rad M R, Physicochem Probl Miner Process 49 (2013) 725.Google Scholar
  22. 22.
    Baba A A, Ibrahim L, Bale R B, Alabi A G F, Adekola F A, Ghosh M K, Sanjay K, and Sheik A, CIM J 7 (2016) 1.CrossRefGoogle Scholar
  23. 23.
    Baba A A, Olaoluwa D T, Alabi A G F, Ibrahim A S, and Ruth O S, Can Metall Q (2017) DOI- 1080/00084433.2017.Google Scholar
  24. 24.
    Danuza P W, Germano D, Renata C A, and Marcelo B M, J Power Sources 159 (2006) 1510.CrossRefGoogle Scholar
  25. 25.
    Pagnanellia F, Furlania P, Valentinia, Veglio F, and Toro L, Hydrometallurgy 75 (2004) 157.CrossRefGoogle Scholar
  26. 26.
    Ali S, Iqbal Y, Ahmad K, and Afridi B, J Miner Mater Charact Eng 6 (2018) 60.CrossRefGoogle Scholar
  27. 27.
    Abdulkareem A Y, Reductive Leaching and Solvent Extraction of a Nigerian Spessartine Ore in Acidic Media. M.Sc. Dissertation, Depart of Ind Chem Uni of Ilorin Nigeria 2017.Google Scholar
  28. 28.
    Nayl A A, Ismail I M, and Aly H F, Int J Miner Process 100 (2011) 116.CrossRefGoogle Scholar
  29. 29.
    El Hazek M, and Gabr A A, Am J Anal Chem 7 (2016) 469.CrossRefGoogle Scholar
  30. 30.
    Adekola A F, Baba A A, and Girigisu S, J Cent South Univ 23 (2016) 318.Google Scholar
  31. 31.
    Haifeng S U, Huaikun L, Wang F, Xiaoyan L, and Wen Y, Chin J Chem Eng 18 (2010) 730.CrossRefGoogle Scholar
  32. 32.
    Dan-dan W, Jiu-Shuai D, Shu-ming W, and Jian-jing D, Int J Miner Metall Mater 22 (2015) 242.Google Scholar
  33. 33.
    Baba A A, Adekola F A, and Bale R B, J Hazard Mater 171 (2009) 837.CrossRefGoogle Scholar
  34. 34.
    Jacox M E, J Phys Chem Ref 32 (2003) 1.Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  • Alafara A. Baba
    • 1
  • Aishat Y. Abdulkareem
    • 1
    • 2
  • Mustapha A. Raji
    • 1
  • Kuranga I. Ayinla
    • 1
  • Folahan A. Adekola
    • 1
  • Rafiu B. Bale
    • 3
  • Malay K. Ghosh
    • 4
  1. 1.Department of Industrial ChemistryUniversity of IlorinIlorinNigeria
  2. 2.National Mathematical CentreSheda-KwaliAbujaNigeria
  3. 3.Department of Geology and Mineral SciencesUniversity of IlorinIlorinNigeria
  4. 4.CSIR-Institute of Minerals and Materials TechnologyBhubaneswarIndia

Personalised recommendations