Ag Nanowire @ Nano-groove Fabrication for Enhanced Light Harvesting Through Silicon Chemical Etching

  • Han Dai
  • Jie Sun
  • Zhutie Li
  • Xinxiang Yu
  • Junfeng Zhao
  • Hongjie Fang
  • Zhenfeng Zhu
Technical Paper
  • 12 Downloads

Abstract

Chemical etching was employed to fabricate Ag nanowire @ nano-grooves on silicon to increase light harvesting. Ag nanowire @ nano-groove structures (300 nm to 1.7 μm in size) were obtained by controlling the etching time. A significant increase in the surface roughness was achieved around the Ag nanowire @ grooves with an etching time of 10–30 min. According to finite difference time domain simulations, a significant increase in both the light intensity and light path length were observed with the Ag nanowire @ nano-groove nano-structures on the silicon substrate. Increasing the opening sizes of the grooves to ~ 255 nm and the roughness of the Ag nanowire and groove surface to ~ 30 nm further enhanced the light harvesting abilities. This work not only provides a deeper insight into metal assisted silicon etching, but also indicates a possible way to enhance the light harvesting abilities of thin film solar cells.

Keywords

Ag nanowire Chemical etching Nano-groove Light harvesting 

Notes

Acknowledgements

This work was supported by grants from the Natural Science Foundation of Shandong Province, China (Nos. ZR2017PEM005 and ZR2017MEM005), Project of Scientific Research Development of Shandong Universities China (Nos. J17KA043 and J17KB076), and 2015 Shandong Province Project of Outstanding Subject Talent Group.

References

  1. 1.
    Lee J Y, Connor S T, Cui Y, and Peumans P, Nano Lett 10 (2010) 1276.CrossRefGoogle Scholar
  2. 2.
    Chen M, Phang I Y, Lee M R, Yang J K W, and Ling X Y, Langmuir 29 (2013) 7061.CrossRefGoogle Scholar
  3. 3.
    Chen J, Bi H, Sun S, Zhao W, Lin T Q, Wan D Y, and Huang F Q, ACS Appl Mater Interfaces 5 (2013) 1408.CrossRefGoogle Scholar
  4. 4.
    Dai H, Li M C, Li Y F, Yu H, Bai F, and Ren X F, Opt Express 20 (2012) A502.CrossRefGoogle Scholar
  5. 5.
    Black C T, Ruiz R, Breyta G, Cheng J Y, Colburn M E, Guarini K W, Kim H C, and Zhang Y, IBM J Res Dev 51 (2007) 605.CrossRefGoogle Scholar
  6. 6.
    Jeon H C, Heo C J, Lee S Y, and Yang S M, Adv Funct Mater 22 (2012) 4268.CrossRefGoogle Scholar
  7. 7.
    Li X L, and Bohn P W, Appl Phys Lett 77 (2000) 2572.CrossRefGoogle Scholar
  8. 8.
    Vinzons L U, Shu L, Yip S, Wong C Y, Chan L L, and Ho J C, Nanoscale Res Lett 12 (2017) 385.CrossRefGoogle Scholar
  9. 9.
    Tsao Y C, Fisker C, and Pedersen T G, Opt Commun 315 (2014) 17.CrossRefGoogle Scholar
  10. 10.
    Salonen J, Lehto V P, Björkqvist M, and Laine E, Appl Phys Lett 75 (1999) 6.CrossRefGoogle Scholar
  11. 11.
    Huang Z P, Geyer N, Werner P, Boor J D, and Gösele U, Adv Mater 23 (2011) 285.CrossRefGoogle Scholar
  12. 12.
    Pillai S, Catchpole K R, Trupke T, Zhang G, Zhao J, and Green M A, Appl Phys Lett 88 (2006) 1102-1.CrossRefGoogle Scholar
  13. 13.
    Zhang M L, Peng K Q, Fan X, Jie J S, Zhang R Q, Lee S T, and Wong N B, J Phys Chem C 112 (2008) 4444.CrossRefGoogle Scholar
  14. 14.
    Hu L B, Kim H S, and Lee J Y, ACS Nano 4 (2010) 2955.CrossRefGoogle Scholar
  15. 15.
    Tsujino K, and Matsumura M, Electrochem Solid State Lett 8 (2005) C193.CrossRefGoogle Scholar
  16. 16.
    Belmont P, and Parker E, J Org Chem 2009 (2009) 6075.Google Scholar
  17. 17.
    Tsujino K, and Matsumura M, Electrochim Acta 53 (2007) 28.CrossRefGoogle Scholar
  18. 18.
    Peng K Q, Hu J  J, Yan Y  J, Wu Y, Fang H, Xu Y, Lee S T, and Zhu J, Adv Funct Mater 16 (2006) 387.CrossRefGoogle Scholar
  19. 19.
    Li X, and Bohn P W, Appl Phys Lett 77 (2000) 2572-1.Google Scholar
  20. 20.
    Peng K Q, Wu Y, Fang H, Zhong X Y, Xu Y, and Zhu J, Angew Chem Int Ed 44 (2005) 2737.CrossRefGoogle Scholar
  21. 21.
    Brahiti N, Bouanik S A, and Hadjersi T, Appl Surf Sci 258 (2012) 5628.CrossRefGoogle Scholar
  22. 22.
    Bai F, Li M C, Song D D, Yu H, Jiang B, and Li Y F, Appl Surf Sci 273 (2013) 107.CrossRefGoogle Scholar
  23. 23.
    Chartier C, Bastide S, and Lévy-Clément C, Electrochim Acta 53 (2008) 5509.CrossRefGoogle Scholar
  24. 24.
    Qu Y Q, Liao L, Li Y J, Zhang H, Huang Y, and Duan X F, Nano Lett 9 (2009) 4539.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  1. 1.School of EngineeringYantai Nanshan UniversityLongkouChina
  2. 2.Testing and Analysis CenterShandong Nanshan Aluminum Co. Ltd.LongkouChina

Personalised recommendations