Advertisement

Effects of Crack Density on Wettability and Mechanical Properties of Hard Chrome Coatings

  • Suwat Ploypech
  • Martin Metzner
  • Claudia Beatriz dos Santos
  • Petch Jearanaisilawong
  • Yuttanant BoonyongmaneeratEmail author
Technical Paper
  • 20 Downloads

Abstract

Hard chrome is an important coating used widely in the industry, yet the understanding of its plating process in relation to surface crack development and corresponding properties has not been fully established. This research has investigated the development of surface crack of hard chrome through the variations of chromic acid concentration, catalyst content and plating temperature, and subsequently examined how crack density contributes to wettability and mechanical properties in dry and lubricated environments. The study has revealed that an increase in crack density in the low-to-medium crack range (150–400 crack/cm) is generated due to the decrease in the chromic acid-to-catalyst volume ratio and the increase in temperature. These process parameter adjustments has led to reduction of cathodic current efficiency and hydrogen gas development which can ultimately generate stress in the deposits. An increase in crack density has contributed to the marked improvement of wettability with a decrement of the contact angle from 8.5° to 4.2°. Hardness has also been found to increase from 720 to 830 HV. Furthermore, crack density increment has also resulted in the reduction in wear rate of the coatings in a non-lubricated condition. The hardness of the coating and the presence of cracks appear to largely influence the improvement of the wear resistance.

Keywords

Hard chrome Electrodeposition Crack density Wettability Tribology 

Notes

Acknowledgement

The authors gratefully acknowledge the financial support from “The Research and Researchers for Industries” program of The Thailand Research Fund (TRF), Project Code PHD56I0028, and Okuno-Auromex (Thailand) Co., Ltd. for supports with research funds and research facility. The authors also thank the support from Chulalongkorn University’s Ratchadaphiseksomphot Endowment Fund granted to the Surface Coatings Technology for Metals and Materials Research Unit (GRU 57-005-62-001). The support from German Federal Ministry of Education and Research BMBF with the project title “Aufbau einer Forschungsstation für Energieeffizienz elektrochemischer Beschichtungsprozesse und –anlagen – ECOPLATE”, support code 01DP17044, project executing organisation DLR Projektträger, Bonn, is sincerely acknowledged.

References

  1. 1.
    Fink C G, US Patents 1,581,188, Process of Electrodepositing Chromium and of Preparing Baths Therefor (1926).Google Scholar
  2. 2.
    Dubpernell G, Modern Electroplating, Wiley, New York (1963).Google Scholar
  3. 3.
    Morisset P, Oswald J W, Draper C R, and Pinner R, Chromium Plating, Teddington Middlesex Publishing, England (1954).Google Scholar
  4. 4.
    Pina J, Dias A, Francois M, and Lebrun J L, Surf Coat Technol 96 (1997) 148.CrossRefGoogle Scholar
  5. 5.
    Arieta A G, and Gawne D T, Surf Coat Technol 70 (1995) 243.CrossRefGoogle Scholar
  6. 6.
    Van der Horst J M A, Proc Am Electroplaters’ Soc (1943).Google Scholar
  7. 7.
    Xu L, Guan H, Li D, and Wang L, Proc Inst Mech Eng J 229 (2015) 1372.CrossRefGoogle Scholar
  8. 8.
    Sohi M H, Kashia A A, and Hadavib S M M, J Mater Process Technol 138 (2003) 219.CrossRefGoogle Scholar
  9. 9.
    Podgornik B, Massler O, Kafexhiu F, and Sedlacek M, Tribol Int 121 (2018) 333.CrossRefGoogle Scholar
  10. 10.
    Nascimento M P D, Souzab R C, Miguela M, Pigatinc W L, and Voorwald H J C, Surf Coat Technol 138 (2011) 113.CrossRefGoogle Scholar
  11. 11.
    Pfeiffer W, Koplin C, Reisacher E, and Wenzel K, Mater Sci Forum 681 (2011) 133.CrossRefGoogle Scholar
  12. 12.
    Wenzel R N, Ind Eng Chem 28 (1936) 988.CrossRefGoogle Scholar
  13. 13.
    Buckle H, Metal Rev 4 (1959) 49.Google Scholar
  14. 14.
    Lausmann G A, Surf Coat Technol 86–87 (1996) 814.CrossRefGoogle Scholar
  15. 15.
    Brenner A, Burkhead P, and Jennings C, J Res Natl Bur Stand 40 (1948) 31.CrossRefGoogle Scholar
  16. 16.
    Lausmann G A, and Unruh J N, Die Galvanische Verchromung, Schriftenreihe Galvanotechnik. Eugen G. Leuze Verlag Publications, Germany (2006).Google Scholar
  17. 17.
    Ploypech S, Boonyongmaneerat Y, and Jearanaisilawong P, Surf Coat Technol 206 (2012) 3758.CrossRefGoogle Scholar
  18. 18.
    Ghosh U, Chakraborty M, Bhandari A B, and Chakraborty S, Langmuir 31 (2015) 6001.CrossRefGoogle Scholar
  19. 19.
    Chaudron G, and Moreau L, Hydrogen Embrittlement of Steel, Korrosion & Metallschutz (1942), p 134.Google Scholar
  20. 20.
    Wasekar N P, and Sundararajan G, Wear 342–343 (2015) 340.CrossRefGoogle Scholar
  21. 21.
    Cullity B D, Elements of X-ray Diffraction, 2nd Edn, Addison-Wesley Publications, New York (1998).Google Scholar
  22. 22.
    Archard J F, J Appl Phys 24 (1953) 981.CrossRefGoogle Scholar
  23. 23.
    Zeng Z, Wang L, Chen L, and Zhang J, Surf Coat Technol 201 (2006) 2282.CrossRefGoogle Scholar
  24. 24.
    Wang L, Gao Y, Xu T, and Xue Q, Appl Surf Sci 252 (2006) 7361.CrossRefGoogle Scholar
  25. 25.
    Haseeb A S M A, Albers U, and Bade K, Wear 264 (2008) 106.CrossRefGoogle Scholar
  26. 26.
    Weston D P, Shipway P H, Harris S J, and Cheng M K, Wear 267 (2009) 934.CrossRefGoogle Scholar
  27. 27.
    El-Amoush A S, Abu-Rob A, Edwan H, Atrash K, and Igab M, Solid State Sci 13 (2011) 529.CrossRefGoogle Scholar
  28. 28.
    Nurbas M, and Atabay E N, Adv Mater Phys Chem 02 (2012) 68.CrossRefGoogle Scholar
  29. 29.
    Tonder K, Tribol Int 37 (2004) 137.CrossRefGoogle Scholar
  30. 30.
    Hamilton D B, Walowit, J A, and Allen C M, ASME J Basic Eng 88 (1966) 177.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.Nanoscience and Technology, Graduate SchoolChulalongkorn UniversityBangkokThailand
  2. 2.Fraunhofer Institute for Manufacturing Engineering and AutomationStuttgartGermany
  3. 3.Department of Mechanical and Aerospace Engineering, Faculty of EngineeringKing Mongkut’s University of Technology North BangkokBangkokThailand
  4. 4.Surface Coating Technology for Metals and Materials Research Unit, Metallurgy and Materials Science Research InstituteChulalongkorn UniversityBangkokThailand

Personalised recommendations