Comparison of Continuum Damage Laws Under Uniaxial Creep for an AISI 316 Stainless Steel

Technical Paper
  • 58 Downloads

Abstract

Parameters of five popular continuum damage models are fit to match their creep rate and time to rupture predictions with that of a validated micro-mechanisms based model at a high nominal stress for an austenitic stainless steel. Their predictions are then compared with that of the micro-mechanisms based model at lower stress levels. The creep-strain rate and time to failure predictions of the model due to Wen et al. (Eng Fract Mech 98:169–184, 2013) best agrees with that of the micro-mechanisms based model in the regime of dominance of creep deformation processes. At still lower stress levels, where cavitation-rate is determined by diffusion processes, the Wen et al. model predictions of creep lifetimes become excessively non-conservative. A correction based on a formula due to Cocks and Ashby (Prog Mater Sci 27:189–244, 1982) has been proposed for this regime.

Keywords

Creep Continuum damage mechanics Damage micro-mechanisms 316-Type austenitic stainless steels 

Notes

Acknowledgements

The authors thank the High Performance Computing Centre at IIT Madras, where the simulations reported here were performed. We also gratefully acknowledge helpful comments from the referee.

References

  1. 1.
    Wen J-F, Tu S-T, Gao X-L, and Reddy J N, Eng Fract Mech 98 (2013) 169.CrossRefGoogle Scholar
  2. 2.
    Cocks A C F, and Ashby M F, Prog Mater Sci 27 (1982) 189.CrossRefGoogle Scholar
  3. 3.
    Miller D A, and Langdon T G, Metall Mater Trans 10A (1979) 1635.CrossRefGoogle Scholar
  4. 4.
    Frost H J, and Ashby M F, Deformation Mechanism Maps, Pergamon Press, Oxford (1982).Google Scholar
  5. 5.
    Hoff N J, J Appl Mech (1953) 105.Google Scholar
  6. 6.
    Sasikala G, Mannan S L, Mathew M D, and Rao K B, Metall Mater Trans 31 (2000) 1175.CrossRefGoogle Scholar
  7. 7.
    Chen I-W, and Argon A S, Acta Metall 29 (1981) 1321.CrossRefGoogle Scholar
  8. 8.
    Chen I-W, Metall Mater Trans 14A (1983) 2289.CrossRefGoogle Scholar
  9. 9.
    Dyson B F, Metall Sci 10 (1976) 349.CrossRefGoogle Scholar
  10. 10.
    Mahesh S, Alur K C, and Mathew M D, Model Simul Mater Sci Eng 19 (2010) 015005.CrossRefGoogle Scholar
  11. 11.
    Saanouni K, Chaboche J L, and Bathias C, Eng Fract Mech 25 (1986) 677.CrossRefGoogle Scholar
  12. 12.
    Nikbin K M, Smith D J, and Webster G A, Proc R Soc Lond A 396 (1984) 183.CrossRefGoogle Scholar
  13. 13.
    Kachanov L M, Isv Akad Nauk SSR Otd Tekh Nauk 8 (1958) 26.Google Scholar
  14. 14.
    Rabotnov Y N, Creep Problems in Structural Members, Volume 7, North-Holland Pub. Co., Amsterdam (1969).Google Scholar
  15. 15.
    Liu Y, and Murakami S, JSME Int J Ser A 41 (1998) 57.CrossRefGoogle Scholar
  16. 16.
    Hayhurst D R, Vakili-Tahami F, and Zhou J Q, Int J Press Vessels Pip 80 (2003) 97.CrossRefGoogle Scholar
  17. 17.
    Hayhurst D R, Dyson B F, and Lin J, Eng Fract Mech 49 (1994) 711.CrossRefGoogle Scholar
  18. 18.
    Hutchinson J W, Acta Metall 31 (1983) 1079.CrossRefGoogle Scholar
  19. 19.
    Hayhurst D R, Pineridge Press Eng Approach High Temp Des (1983) 85Google Scholar
  20. 20.
    Rodin G J, and Parks D M, J Mech Phys Solids 36 (1988) 237.CrossRefGoogle Scholar
  21. 21.
    Sester M, Mohrmann R, and Riedel H Elevated Temperature Effects on Fatigue and Fracture, ASTM International, West Conshohocken (1997).Google Scholar
  22. 22.
    Xu Q, and Hayhurst D R, Int J Press Vessels Pip 80 (2003) 689.CrossRefGoogle Scholar
  23. 23.
    Othman A M, and Hayhurst D R, Int J Damage Mech 2 (1993) 16.CrossRefGoogle Scholar
  24. 24.
    Othman A M, Hayhurst D R, and Dyson B F, Proc R Soc Lond A: Math Phys Eng Sci 441 (1993) 343.Google Scholar
  25. 25.
    Mahesh S, Alur K C, Mathew M D, Model Simul Mater Sci Eng 19 (2011) 015005CrossRefGoogle Scholar
  26. 26.
    Norton F H, Creep of Steel at High Temperatures, McGraw-Hill, New York (1929).Google Scholar
  27. 27.
    Cocks A C F, and Ashby M F, Prog Mater Sci 27 (1982) 189.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2017

Authors and Affiliations

  1. 1.Department of Aerospace EngineeringIndian Institute of Technology, MadrasChennaiIndia

Personalised recommendations