Synthesis, Characterization and Mechanical Properties of AA7075 Based MMCs Reinforced with TiB2 Particles Processed Through Ultrasound Assisted In-Situ Casting Technique

  • Vinod Kumar V. MetiEmail author
  • Shridhar Shirur
  • Jayakrishnan Nampoothiri
  • K. R. Ravi
  • I. G. Siddhalingeshwar
Technical Paper


AA7075/TiB2 composites have been synthesized through both in situ salt-melt reaction method and ultrasound assisted in situ process. Microstructural studies reveals that ultrasound assisted in situ method improves the dispersion of TiB2 particles and reduces the porosity level. Moreover, the ultrasonic treatment refines the reinforcement particle size along with improvement in particle dispersion. The mechanical property assessment confirms that ultrasonic treatment improves the mechanical properties of composite. The hardness of the AA7075 alloy is increased from 55 HV to 74 HV by the addition of 5% TiB2 particles and it further increased to 82 HV by ultrasonic treatment. A similar trend is also observed when weight percentage of particles increases to 7.5%. Addition of 5% in situ TiB2 particles increases the ultimate tensile strength of AA7075 alloy by 60 MPa and it is further enhanced by 80 MPa upon ultrasound assisted process. Composites have shown a small reduction in ductility when compared to un-reinforced alloy, though 81% ductility of matrix alloy has been retained. Similar trend has been observed in composites fabricated using ultrasonic assisted casting.


Aluminium matrix composites In-situ Ultrasound assisted in situ casting Agglomeration Characterization 



The authors wish to thank the management of B.V. Bhoomaraddi College of Engineering and Technology, Hubli for its support. The authors would like to acknowledge the colleagues and technical staff members for their support. The third and fourth authors acknowledges the Council of Scientific and Industrial Research, New Delhi (Award No. 08/473(0006)/2015 EMR-1) and Directorate of Naval Research Board, Govt. of India (Grant No. DNRD/05/4003/NRB/292).


  1. 1.
    Deaquino-Lara R, Gutiérrez-Castañeda E, Estrada-Guel I, Hinojosa-Ruiz G, García-Sánchez E, Herrera-Ramírez J M, Pérez-ustamante R, and Martínez-Sánchez R, Mater Des 53 (2014) 1104.CrossRefGoogle Scholar
  2. 2.
    Ezhil Vannan S, and Paul Vizhian S, J Miner Mater Charact Eng 2 (2014) 182.Google Scholar
  3. 3.
    Murthy N V, Reddy A P, Selvaraj N, and Rao C S P, Int J Mech Eng (IJME) ISSN(P): 2319-2240; ISSN(E): 2319-2259, 4 (2015) 29.Google Scholar
  4. 4.
    Mathur S, and Barnawal A, Int J Sci Res (IJSR), ISSN (Online): (2013) 2319.Google Scholar
  5. 5.
    Bhandare R G, and Sonawane P M, Int J Eng Adv Tech (IJEAT) ISSN: 2249–8958, 3 (2013).Google Scholar
  6. 6.
    Pramod S L, Srinivasa R Bakshi, and Murty B S, J Mater Eng Perform. doi: 10.1007/s11665-2015-1424-2 (2015).Google Scholar
  7. 7.
    Lan J, Yang Y, and Li X, Mater Sci Eng A 386 (2004) 284.CrossRefGoogle Scholar
  8. 8.
    Sajjadi S A, Ezatpour H R, and Torabi Parizi M, Mater Des 34 (2012) 106.CrossRefGoogle Scholar
  9. 9.
    Qin J, Chen G, Wang B, Nan H, Han F, and Zhiming D, J Alloys Compd, 653 (2015) 32.CrossRefGoogle Scholar
  10. 10.
    Rana R S, Purohit R, and Das S, Int J Eng Res Appl 3 (2013) 386.Google Scholar
  11. 11.
    Rahul Gupta, Daniel B S S, and Chaudhari G P, Int J Appl Res Mech Eng (IJARME) ISSN: 2231–5950, 3 (2013).Google Scholar
  12. 12.
    Song-li Z, Yu-tao Z, and Gang C, Trans Nonferrous Met Soc China 20 (2010) 2096.CrossRefGoogle Scholar
  13. 13.
    Harichandran R, and Selvakumar N, Arch Civil Mech Eng ACME 326 (2015).Google Scholar
  14. 14.
    El Hallem Abd S M, Ghayad I, Eisaa M, Nassif N, Shoeib M A, and Soliman H, Int J Electrochem Sci 9 (2014) 2005.Google Scholar
  15. 15.
    Zhang S-L, Dong X-W, Zhao Y-T, Liu M-P, Chen G, Zhang Z-K, Zhang Y-Y, and Gao X-H, Trans Non ferrous Met Soc China 24 (2014) 3894.CrossRefGoogle Scholar
  16. 16.
    Nie K B, Wang X J, Wu K, Xu L, Zheng M Y, and Hu X S, J Alloys Compd 509 (2011) 8664.CrossRefGoogle Scholar
  17. 17.
    Bhingole P P, Chaudhari G P, and Nath S K, Compos Part A 66 (2014) 209.CrossRefGoogle Scholar
  18. 18.
    Feng P, Liang G, and Zhang J, Ceram Int 40 (2014) 10817.CrossRefGoogle Scholar
  19. 19.
    Liu Z, Han Q, and Li J, Powder Technol 247 (2013) 55.CrossRefGoogle Scholar
  20. 20.
    Liu Z, Han Q, and Li J, Compos Part B 42 (2011) 2080.CrossRefGoogle Scholar
  21. 21.
    Nie K B, Wang X J, Wu K, Hu X S, Zheng M Y, Xu L, Mater Sci Eng A 528 (2011) 8709.CrossRefGoogle Scholar
  22. 22.
    Lakshmi S, Lu L, and Gupta M, J Mater Process Technol 73 (1998) 160.CrossRefGoogle Scholar
  23. 23.
    Kumar S, Subramaniya Sarma V, and Murty B S, Metall Mater Trans A Phys Metall Mater Sci 41 (2010) 242.CrossRefGoogle Scholar
  24. 24.
    Liu Z, Rakita M, Xu W, Wang X, and Han Q, Chem Eng J 263 (2015) 317.CrossRefGoogle Scholar
  25. 25.
    Zhang Q, Wu W H, Chen G Q, Jiang L T, and Luan B F, Compos A, 34 (2003) 1023.CrossRefGoogle Scholar
  26. 26.
    Anandkumar R, Almeida A, and Vilar R, Surf Coat Technol 205 (2011) 3824.CrossRefGoogle Scholar
  27. 27.
    Feng C F, and Froyen L, J Mater Sci 35 (2000) 837.CrossRefGoogle Scholar
  28. 28.
    Mandal A, Maiti R, Chakraborty M, and Murty B S, Mater Sci Eng A 386 (2004) 296.CrossRefGoogle Scholar
  29. 29.
    Herbert M A, Sarkar C, Mitra R, and Chakraborty M, Metall Trans A 38 (2007) 2110.CrossRefGoogle Scholar
  30. 30.
    Siddhalingeshwar I G, Deepthi D, Chakraborty M, and Mitra R, Wear 271 (2011) 748.CrossRefGoogle Scholar
  31. 31.
    Z Fan, Y Wang, Y Zhang, T Qin, XR Zhou, G E Thompson, T Pennycook, and T Hashimoto, Acta Mater 84 (2015) 292.CrossRefGoogle Scholar
  32. 32.
    Ravi K R, Pillai R M, Pai B C, Chakraborty M, 38 (2007) 2531.Google Scholar
  33. 33.
    Juretzko F R, Dhindaw B K, Stefanescu D M, Sen S, and Curreri P A, Metall Mater Trans A, 29 (1998) 1691.CrossRefGoogle Scholar
  34. 34.
    Nampoothiri J, Raj B, and Ravi K R, Trans Indian Inst Metals 68 (2015) 1101.CrossRefGoogle Scholar
  35. 35.
    Li J, Momono T, Tayu Y, and Fu Y Mater Lett 62 (2008) 4152.CrossRefGoogle Scholar
  36. 36.
    Nampoothiri J, Harini R S, Nayak S K, Raj B, and Ravi K R, J Alloys Compd 683 (2016) 370.Google Scholar
  37. 37.
    Nampoothiri J, Raj B, and Ravi K R, Mater Sci Forum 830831 (2015) 463.Google Scholar
  38. 38.
    Wang Y, Liao H, Yuna W, and Yang J, Mater Des 53 (2014) 634.CrossRefGoogle Scholar
  39. 39.
    Han Y, Liu X, and Bian X, Compos Part A 33 (2002) 439.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2017

Authors and Affiliations

  • Vinod Kumar V. Meti
    • 1
    Email author
  • Shridhar Shirur
    • 1
  • Jayakrishnan Nampoothiri
    • 2
  • K. R. Ravi
    • 2
  • I. G. Siddhalingeshwar
    • 1
  1. 1.B. V. Bhoomaraddi College of Engineering and TechnologyHubliIndia
  2. 2.PSG Institute of Advanced StudiesCoimbatoreIndia

Personalised recommendations