Advertisement

Thermal Stability of Cathodic Arc Vapour Deposited TiAlN/AlCrN and AlCrN/TiAlN Coatings on Tungsten Carbide Tool

  • T. Sampath KumarEmail author
  • S. Balasivanandha Prabu
  • S. Madhavan
  • K. A. Padmanabhan
Technical Paper
  • 162 Downloads

Abstract

TiAlN/AlCrN and AlCrN/TiAlN bilayer coatings were deposited on tungsten carbide cutting inserts using the plasma enhanced physical vapour deposition process. Their thermal stability was varied by annealing the specimens at different temperatures and time durations. The thermal stability was evaluated from hardness measurement, oxygen absorption and X-ray diffraction (XRD) patterns. TiAlN/AlCrN coating initially shows an increase in hardness, but it decreases when the annealing temperature is increased. A high hardness of 46 GPa is measured in the TiAlN/AlCrN coating annealed at 600 °C for 08 h. But, AlCrN/TiAlN coating displays a decrease in hardness after annealing at 600 °C, and the hardness increases to 47 GPa on increasing the annealing temperature further (1000 °C for 6 h). From weight measurements, it is clear that the TiAlN/AlCrN bilayer coating results in weight reduction initially, but it increases with a further increase in the annealing temperature. In contrast, in the AlCrN/TiAlN coating, the weight increases monotonically, but gradually, with increasing temperature of annealing. The XRD results are discussed with reference to the different oxide phases formed in the two bilayer coatings during annealing.

Keywords

Nanostructured coatings Cathodic arc vapour deposition Thermal stability XRD AFM SEM 

Supplementary material

12666_2017_1199_MOESM1_ESM.docx (31 kb)
Supplementary material 1 (DOCX 32 kb)

References

  1. 1.
    Dosbaeva G K, Veldhuis S C, Yamamoto K, Wilkinson D S, Beake B D, Jenkins N, Elfizy A, and Fox-Rabinovich GS, Int J Refract Metals Hard Mater 28 (2010) 133.Google Scholar
  2. 2.
    Yin-Yu C, Da-Yung W, and Chi-Yung H, Surf Coat Technol 200 (2005) 1702.Google Scholar
  3. 3.
    Cordes S E, CIRP J Manuf Sci Technol 05 (2012) 20.CrossRefGoogle Scholar
  4. 4.
    Willmann H, Mayrhofer P H, Persson P O A, Reiter A E, Hultman L, and Mitterer C, Scr Mater 54 (2006) 1847.CrossRefGoogle Scholar
  5. 5.
    Yin-Yu C, Shun-Jan Y, and Da-Yung W, J Thin Solid Films 515 (2007) 4722.CrossRefGoogle Scholar
  6. 6.
    Paldey S, and Deevi S C, Mater Sci Eng A342 (2003) 58.CrossRefGoogle Scholar
  7. 7.
    Dobrzanski L A, and Mikula J J, Mater Process Technol 164 (2005) 822.CrossRefGoogle Scholar
  8. 8.
    Veprek S, Mukherjee S, Mannling H D, and Jianli H, Mater Sci Eng A340 (2003) 292.CrossRefGoogle Scholar
  9. 9.
    Veprek S, Mukherjee S, Karvankova P, Mannling H D, He J L, Moto K, Proachazka J, and Argon A S, Thin Solid Films 436 (2003) 220.CrossRefGoogle Scholar
  10. 10.
    Grzesik W, Zalisz Z, Krol S, and Nieslony P, Wear 261 (2006) 1191.CrossRefGoogle Scholar
  11. 11.
    Endrino J L, and Fox-Rabinovich G C, Surf Coat Technol 200 (2006) 6840.CrossRefGoogle Scholar
  12. 12.
    Parreira N M G, and Polcar, C A, Surf Coat Technol 201 (2007) 7076.CrossRefGoogle Scholar
  13. 13.
    Tlili B, Noureav C, Walock M J, Nasri M, and Ghrib T, Vacuum 86 (2012) 1048.CrossRefGoogle Scholar
  14. 14.
    Willmann H, Mayrhofer P H, Hultman L, and Mitterer C, Int Heat Treat Surf. Eng 1 (2007) 75.CrossRefGoogle Scholar
  15. 15.
    Raveh A, Zukerman I, Shneck R, Avni R, and Fried I, Surf Coat Technol 201 (2007) 6136.CrossRefGoogle Scholar
  16. 16.
    McConnell M L, Dowling D P, Donnelly N, Donnelly K, and Flood R V, Surf Coat Technol 116 (1999) 1133.Google Scholar
  17. 17.
    Chim Y C, Ding X Z, Zeng T, and Zhang S, Thin Solid Films 517 (2009) 4845.CrossRefGoogle Scholar
  18. 18.
    Mayrhofer P M, Willmann H, and Mitterer C, Thin Solid Films 440 (2003) 174.CrossRefGoogle Scholar
  19. 19.
    Mitterer C, Mayrhofer P H, Musil J, Vacuum 71 (2003) 279.CrossRefGoogle Scholar
  20. 20.
    Mayrhofer P H, and Stoiber M, Surf Coat Technol 08 (2006) 132.Google Scholar
  21. 21.
    Bhagchandani R K, Bangari R S, Mehra D, Shukla V N, and Tewari V K, Int J Adv Sci Res Technol 3 (2012) 205.Google Scholar
  22. 22.
    Mayrhofer P H, Tischler G, and Mitterer C, Surf Coat Technol 142 (2001) 78.CrossRefGoogle Scholar
  23. 23.
    Dejun L I, Sci China Ser E: Technol Sci 49 (2006) 576.CrossRefGoogle Scholar
  24. 24.
    Lugscheider E, Knotek O, Barimani C, and Zimmermann H, Surf Coat Technol 94 (1997) 641.CrossRefGoogle Scholar
  25. 25.
    Barshilia H C, Prakash M S, Jain A, and Rajam K S, Vacuum 77 (2005) 169.CrossRefGoogle Scholar
  26. 26.
    Jankowshi A F, Go J, and Hayees J P, Surf Coat Technol 202 (2007) 957.CrossRefGoogle Scholar
  27. 27.
    Ma S, Prochazka J, Karvankova P, Ma Q, Wang X, Ma D, Xu K, and Veprek S, Surf Coat Technol 194 (2005) 143.Google Scholar
  28. 28.
    Bai X, Zheng W, Xiong F, and Jiang Q, Appl Surf Sci 253 (2007) 7238.CrossRefGoogle Scholar
  29. 29.
    Veprek S, Veprek-Heijman M G J, Karvankova P, and Prochazka J, Thin Solid Films 476 (2005) 01.CrossRefGoogle Scholar
  30. 30.
    Edlmayr V, Moser M, Walter C, and Mitterer C, Surf Coat Technol 204 (2010) 1576.Google Scholar
  31. 31.
    Barshilia H C, Deepthi B, Rajam K S, Bhatti K P, and Chaudhary S, J Vac Sci Technol A Vac Surf Films 27 (2009) 29.Google Scholar
  32. 32.
    Korotaev A D, Borisov D P, and Moshkov, Y, Russian Phys J 50 (2007) 969.CrossRefGoogle Scholar
  33. 33.
    Abid A, Bensalem R, Sealy B J, J Mater Sci 2 (1986) 1301.Google Scholar
  34. 34.
    Sampath Kumar T, Balasivanandha Prabu S, Manivasagam G, and Padmanabhan K A, Int J Min Metall Mater 21 (2014) 796.Google Scholar
  35. 35.
    Sampath kumar T, Balasivanandha Prabu S, and Manivasagam G, J Mater Eng Perform 23 (2014) 2877.Google Scholar
  36. 36.
    Faga M G, Gautier G, Calzavarini R, Perucca M, Aimo Boot E, Cartasegna F, and Settineri L, Wear 263 (2007) 1306.CrossRefGoogle Scholar
  37. 37.
    Fox-Rabinovich G S, Yamamoto K, Aguirre M H, Cahill D G, Veldhuis S C, Biksa A, Dosbaeva G, and Shuster L S, Surf Coat Technol 204 (2010) 2465.CrossRefGoogle Scholar
  38. 38.
    Hernández L C, Ponce L, Fundora A, López E, and Pérez E, Materials 4 (2011) 929.Google Scholar
  39. 39.
    Novak M, Lofaj F, and Hviscova P, Powder Metall Prog 13 (2013) 03.Google Scholar
  40. 40.
    Ivashchenko L A, Russakov G V, Powder Metall Metals Ceram 43 (2004) 11.Google Scholar
  41. 41.
    Veprek S, and Argon A S, J Vac Sci Technol 21 (2003) 532.CrossRefGoogle Scholar
  42. 42.
    Prengel H, Jindal P C, Wendt K H, Santhanam A T, Hegde P L, and Penich R M, Surf Coat Technol 139 (2001) 25.CrossRefGoogle Scholar
  43. 43.
    Bouzakis K D, Pappa M, Skordaris G, Bouzakis E, and Gerardis S, Surf Coat Technol 205 (2010) 1481.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2017

Authors and Affiliations

  • T. Sampath Kumar
    • 1
    Email author
  • S. Balasivanandha Prabu
    • 2
  • S. Madhavan
    • 3
  • K. A. Padmanabhan
    • 2
  1. 1.School of Mechanical Engineering, Vellore Institute of TechnologyVIT UniversityVelloreIndia
  2. 2.Department of Mechanical Engineering, College of Engineering GuindyAnna UniversityChennaiIndia
  3. 3.Department of Mechanical EngineeringIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations