Advertisement

Transactions of the Indian Institute of Metals

, Volume 71, Issue 1, pp 201–207 | Cite as

Phase Evolution and Mechanical Properties of Suction Cast Ti–Fe–Co Ternary Alloys

  • Sumanta Samal
  • Swapnil Agarwal
  • Krishanu BiswasEmail author
Technical Paper

Abstract

The current work has been undertaken with an aim to investigate the phase evolution and mechanical behaviour of Ti–Fe–Co ternary alloys. Extensive electron microscopic studies have been carried out to identify the phases present in the microstructure of the suction cast Ti–Fe–Co ternary alloys. The SEM micrographs of the investigated Ti–Fe–Co alloys reveal that the microstructures consist of eutectic matrix (L → (β-Ti)ss + Ti(Fe,Co) and/or L→(β-Ti)ss + Ti2(Co,Fe)) along with different dendritic phases ((β-Ti)ss or Ti(Fe,Co), Ti2(Co,Fe)) depending on concentration of Co. Ti70Fe20Co10 and Ti75Fe15Co10 alloys show the bimodal eutectics, ((β-Ti)ss + Ti(Fe,Co)) and ((β-Ti)ss + Ti2(Co,Fe)). The room temperature uniaxial compressive test of the Ti70Fe20Co10 ternary alloy exhibits simultaneous improvement in compressive strength (~2819 MPa) and plasticity (~8.5%) among the series of investigated Ti–Fe–Co ternary alloys. Fractography of the surface of Ti70Fe20Co10 ternary alloy reveals mixed mode of fracture. The significant outcome of the investigated Ti–Fe–Co alloys is that, the plasticity of the alloys can be improved by the development of bimodal eutectics in the microstructure or by incorporating disordered dendritic phase.

Keywords

Suction casting Ti alloys Scanning electron microscopy Mechanical properties Fractography 

Supplementary material

12666_2017_1174_MOESM1_ESM.doc (308 kb)
Supplementary material 1 (DOC 307 kb)

References

  1. 1.
    Brandes EA and Brook GB, Smithells Metals Reference Book, 7th ed., Butterworths-Heinemann Ltd., Hartnolls Ltd., Bodmin, UK (1992).Google Scholar
  2. 2.
    Louzguine-Luzgin D V, Louzguina-Luzgina L V, Kato H and Inoue A, J All Compd 434–435 (2007) 32.CrossRefGoogle Scholar
  3. 3.
    Louzguine D V and Kato H, J Mater Res 19 (2004) 3600.CrossRefGoogle Scholar
  4. 4.
    Parlapanska S and Parlapanski D, Corros Sci 39 (1977) 1321.CrossRefGoogle Scholar
  5. 5.
    Kolachev B A, Metallovedenie i Termicheskaya Obrabotka Metallov 10 (1993) 28.Google Scholar
  6. 6.
    Mondal B, Samal S, Biswas K and Govind, IOP Conf Ser Mater Sci Eng 27 (2011) 012025.CrossRefGoogle Scholar
  7. 7.
    He G, Eckert J, Löser W and Schultz L, Nat Mater 2 (2003) 33.CrossRefGoogle Scholar
  8. 8.
    He G, Löser W and Eckert J, Acta Mater 51 (2003) 5223.CrossRefGoogle Scholar
  9. 9.
    He G, Eckert J, Löser W and Hagiwara M, Acta Mater 52 (2004) 3035.CrossRefGoogle Scholar
  10. 10.
    Zhang L C, Das J, Lu H B, Duhamel C, Calina M and Eckert J, Scr Mater 57 (2007), 101.CrossRefGoogle Scholar
  11. 11.
    Das J, Kim K B, Baier F, LÖser W and Eckert J, App Phys Lett 87 (2005) 161907.CrossRefGoogle Scholar
  12. 12.
    Das J, Kim K B, Xu W, LÖser W and Eckert J, Mater Sci Eng A 449–451 (2007) 737.CrossRefGoogle Scholar
  13. 13.
    Das J, Kim K B, Baier F, Loser W, Gebert A and Eckert J, J Alloys Compd 434–435 (2007) 28.CrossRefGoogle Scholar
  14. 14.
    Han J H, Kim K B, Yi S, Park J M, Sohn S W, Kim T E, Kim D H, Das J and Eckert J, App Phys Lett 93 (2008) 141901.CrossRefGoogle Scholar
  15. 15.
    Song G A, Han J H, Kim T E, Park J M, Kim D H, Yi S, Seo Y, Lee N S and Kim K B, Intermetallics 19 (2011) 536.CrossRefGoogle Scholar
  16. 16.
    Samal S, Mondal B, Biswas K and Govind, Metall Mater Trans A 44 (2013) 427.CrossRefGoogle Scholar
  17. 17.
    Louzguine-Luzgin D V, Louzguina-Luzgina L V, Polkinc V I and Inoue A, Scr Mater, 57 (2007) 445.CrossRefGoogle Scholar
  18. 18.
    Louzguine D V, Kato H and Inoue A, Philos Mag Lett 84 (2004) 359.CrossRefGoogle Scholar
  19. 19.
    Louzguina-Luzgina L V, Louzguine-Luzgin D V and Inoue A, Intermetallics 14 (2006) 255.CrossRefGoogle Scholar
  20. 20.
    Louzguine-Luzgin D V, Louzguina-Luzgina L V and Inoue A, Intermetallics 15 (2007) 181.CrossRefGoogle Scholar
  21. 21.
    Louzguine-Luzgin D V, Louzguina-Luzgina L V, Kato H and Inoue A, Acta Mater 53 (2005) 2009.CrossRefGoogle Scholar
  22. 22.
    Samal S and Biswas K, J Nanopart Res 15 (2013) 1.CrossRefGoogle Scholar
  23. 23.
    Massalski T B, Binary Alloy Phase Diagrams, second edition ASM International, Metals Park, OH, USA (1990).Google Scholar
  24. 24.
    Louzguine D V, Kato H and Inoue A, J Alloys Compd 384 (2004) L1.CrossRefGoogle Scholar
  25. 25.
    Samal S, Gautam P, Agarwal S and Biswas K, Mater Sci Forum 790 (2014) 497.CrossRefGoogle Scholar
  26. 26.
    Samal S, Agarwal S, Gautam P and Biswas K, Metall Mater Trans A 46 (2015) 851.CrossRefGoogle Scholar
  27. 27.
    Han J H, Kim K B, Yi S, Park J M, Kim D H, Pauly S and Eckert J, App Phys Lett 93 (2008) 201906.CrossRefGoogle Scholar
  28. 28.
    Cahn R W and Haasen P, Physical metallurgy, 4th ed. North-Holland, Amsterdam, (1996).Google Scholar
  29. 29.
    Biswas K, Phanikumar G, Holland-Moritz D, Herlach DM and Chattopadhyay K, Philos Mag 87 (2008) 3817.CrossRefGoogle Scholar
  30. 30.
    Biswas K, Phanikumar G, Chattopadhyay K, Volkmann T, Funke O, Holland-Moritz D and Herlach D M, Mater Sci Eng A 375 (2004) 464.CrossRefGoogle Scholar
  31. 31.
    Mishra A K, Samal S and Biswas K, Trans Indian Inst Met 65 (2012) 725.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2017

Authors and Affiliations

  • Sumanta Samal
    • 1
    • 2
  • Swapnil Agarwal
    • 1
  • Krishanu Biswas
    • 1
    Email author
  1. 1.Department of Materials Science and EngineeringIndian Institute of Technology KanpurKanpurIndia
  2. 2.Discipline of Metallurgy Engineering and Materials Science (MEMS)IIT IndoreIndoreIndia

Personalised recommendations