Skip to main content
Log in

Corrosion and Passive Film Formation Studies on Modified 9Cr–1Mo Steel in Different Sodium Hydroxide Concentrations at Room Temperature and in Boiling Condition

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Studies were carried out on modified 9Cr–1Mo steel to understand its corrosion as well as passive film characteristics in caustic environment. Potentiodynamic anodic polarization studies were carried out in 1–8 M sodium hydroxide solutions at room temperature (RT) and in boiling conditions. The specimens were passivated at 0.0 V(SCE) for 1 h in 3 and 8 M sodium hydroxide solutions at RT as well as in boiling condition. Laser Raman spectroscopic (LRS) analysis was carried out to examine the nature of oxides/hydroxides formed on the surface of the specimens. Corrosion rates increased by one order of magnitude whereas passive current density increased by almost two orders of magnitude in boiling solution compared to the RT values. Appearance of only maghemite (γ-Fe2O3) peaks in passivated steel in 3 M sodium hydroxide solution at RT compared to that in the 8 M sodium hydroxide solution, which showed Fe(OH)2, maghemite, magnetite, goethite (α-FeOOH) and CrO(OH), Cr2O3 peaks, indicated corrosion attack on the outer layer of the passive film. The passivated steel specimens in 3 and 8 M boiling solutions showed maghemite, magnetite, goethite, hematite (α-Fe2O3) (only in 8 M) and extremely weak peaks of Cr(OH)3 and Cr2O5. These observations indicated dissolution of the outermost part of the passive film with superficial attack on the inner part of the passive film exposing Cr oxide/hydroxides in boiling 3 M solution. However, passivated steel in 8 M solution showed molybdenum oxides, apart from the other iron and chromium oxides/oxyhydroxides. The scanning electron microscopic (SEM) studies on the morphology of the corrosion products along with LRS analysis/characterization confirmed these observations. These results showed increased corrosion attack during passivation with increase in concentration of alkali and temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Choudary B K, Laha K, Nagesha A, Isaac Samuel E, Srinivasan V S, Chadravathi K S, Valsan M, Kannan R,BhanuSankara Rao K and S.L. Mannan, Materials R&D for PFBR, Proceedings of the seminar held on Jan 1–2 (2003) IGCAR, Kalpakkam, 121

  2. Sikka V K, Development of modified 9Cr-1Mo steel for elevated-temperature service, Ferritic alloys for use in nuclear energy technologies (1984) 317

  3. Modi O P, Mungole M N and Singh K P, Corros Sci, 30 (1990) 941

  4. Hippsley C A, Haworth N P, Mater Sci and Tech, 4.9 (1988) 791

    Article  Google Scholar 

  5. Kishore S, Ashok kumar A, Chandramouli S, Nashine BK, Rajan  K, Kalyanasundaram P, Chetal SC, Nuclear Engineering and Design, 243 (2012) 49

    Article  Google Scholar 

  6. Ji-Young Jeong, Jong-man Kim, Tae-Joon Kim, Jong-Hyeun Choi, Byung-Ho Kim, Yong-bum Lee, Transactions of the Korean Nuclear Society autumn Meeting, Jeju, Korea, October 21–22 (2010) 41

  7. Kurahashi H, Kurisu T, Sone Y, Wada K, and Nakai Y, Corrosion, 41(1985) 211

    Article  Google Scholar 

  8. Kiesheyer H, Lennartz G, U.K. Natl. Conf. 69, London, England, Institute on Corrosion Science and Technology, Birmingham, U.K., November (1982) 69

  9. Banerji S K, McMohan Jr. C J, Feng H C, Metall Trans A, 9.2 (1978) 237

    Google Scholar 

  10. Swann P R, Ford F P, Westwood A R C (Eds.), Proc. Conf. Mechanisms Environment-Sensitive Cracking of Materials, The Metal Society, London, England (1977) 437

    Google Scholar 

  11. Takashi Takata & Akira Yamaguchi, Journal of Nuclear Science and Technology, 40 (2012) 708

    Article  Google Scholar 

  12. A.C. Whittingham, J of Nucl Mater, 60 (1976) 119

    Article  Google Scholar 

  13. Bryan Poulson, Corros Sci, 22 (1982) 473

  14. DOE fundamentals handbook Chemistry volume 1 of 2 - doe-hdbk-1015/1-93 January 1993

  15. ASTM - G5 - 14 - Standard Reference Test Method for Making Potentiodynamic Anodic Polarization Measurements, ASTM International, West Conshohocken, PA, USA (2014) 1

  16. Y. El Mendili, A. Abdelouas, J.-F. Bardeau, J. Mater. Environ. Sci., 4 (2013) 786

    Google Scholar 

  17. J.K. Singh and D.D.N. Singh, Corros Sci, 56 (2012) 129

    Article  Google Scholar 

  18. U.R. Evans, Corros. Sci., 9 (1969) 813

    Article  Google Scholar 

  19. W.S. Li and J.L. Luo, Electrochemical investigations on formation and pitting susceptibility of passive films on iron and iron-based alloys, Chapter 3, Prevention of Metal Corrosion: New Research, Editor, Magdalena Nunex, Nova Science Publishers, Inc., New York, USA(2007) 99

  20. Hiroshi Ohmoto, Economic Geology, Vol. 98 (2003) 157

  21. Francesca Genuzio, Alessandro Sala, Thomas Schmidt, Dietrich Menzel, and Hans-Joachim Freund, J. Phys. Chem., C (2014) 118

  22. Eshback’s handbook of engineering fundamentals - 4th edition, editor, Byron D. Tapley; managing editor, Thurman R. Poston, John-Wiley & Sons, Inc., USA (1990) 14

  23. N R Smart, D J Blackwood and L Werme, The anaerobic corrosion of carbon steel and cast iron in artificial ground waters, Technical Report, TR-01-22, Svensk Kärnbränslehantering AB, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden (2001) 19

    Google Scholar 

  24. Hans-Peter Hermansson, The Stability of Magnetite and its Significance as a Passivating Film in the Repository Environment, Studsvik Nuclear AB SE-611 82 Nyköping, Sweden (2004) 5

  25. Namrata Upadhyay, Pujar M G, Das C R, Nanda Gopal Krishna, Mallika C and Kamachi Mudali U, Trans Indian Inst Met, 68 (2015) 129

    Article  Google Scholar 

  26. Yuan Qing-Long and M.M.Stack, Effect of preferential dissolution on erosion corrosion for chromium steel in alkali steel, trans nonferrous soc Chin, 12 (2002) 1

  27. LIU Jun-quan, LI Wei, TU Xiao-hui, Mater Sci and Tech, 10(2002) 374

    Google Scholar 

  28. Olsson C O A, and Landolt D, Electrochim Acta, 48(2003) 1093.

    Article  Google Scholar 

  29. Heine and Kirchheim R, Corros. Sci, 31(1990) 533

    Article  Google Scholar 

  30. Hiroaki Suchiya, Shinji Fujimoto, Osamu Chihara, Toshio Shibata, Electrochimica Acta, 47 (2002) 4357

    Article  Google Scholar 

  31. Fredriksson W, Depth profiling of the passive layer on stainless steel using photoelectron spectroscopy. Dissertation presented at Uppasala University, Angstromlaboratoriet, Lagerhyddsvagen, Uppasala (2012) p 59.

  32. C. Ferrari and J. Robertson,\Physical Review B, 61 (2000) 14095

  33. Z.S. Zabinski and N.T. Mcdevitt, Raman spectra of inorganic compounds related to solid state tribochemical studies, WL-TR-96-4034, Wright Patterson AFB (1996) 1

  34. M. Morcillo, D. de la Fuente, I. Díaz and H. Cano, Revista de Metalurgia, 47 (2011) 426

    Article  Google Scholar 

  35. Zhang X, Xu W, Shoesmith D W, Wren J C, Corros. Sci, 49 (2007) 4553

    Article  Google Scholar 

  36. Yan Xia, Fahe Cao, Wenjuan Liu, Linrong Chan and Jianqing Zhang, Int. J. Electrochem. Sci., 8 (2013) 3057

    Google Scholar 

  37. Castle, J.E. and Clayton, C.R., Corros. Sci., 17 (1977) 7

    Article  Google Scholar 

  38. Castle, J.E. and Qiu, J.H., Corros. Sci., 29 (1989) 591

    Article  Google Scholar 

  39. Castle, J.E. and Qiu, J.H., Corros. Sci., 29 (1989) 605

    Article  Google Scholar 

  40. P. Schmuki, H. Bohni and F. Mansfeld, J Electrochem Soc, (1993) 140

  41. Passivity and localized corrosion: An international Symposium in Honor of Professor Norio Sato Eds. M. Seo, B. MacDougall, H. Takahashi, R.G. Kelly, Electrochemical Society Proceedings Volume 99-27, The Electrochemical Society, Inc., NJ, USA (1999) 19.

  42. Sei J. Oh, D.C. Cook and H.E. Townsend, Hyperfine Interactions, 112 (1998) 59

    Article  Google Scholar 

  43. Xiaohong Fang, Guoquan Zhang, Jie Chen, Dong Wang, Int. J. Electrochem. Sci, 7 (2012) 11847

    Google Scholar 

  44. Barbara Zydorczak, Peter M. May, Danielle P. Meyrick, David Bá tka, and Glenn Hefter, Ind. Eng. Chem. Res., 51 (2012) 16537

    Article  Google Scholar 

  45. Ogura K and Wada H, Electrochemica Acta, 25 (1980) 913

    Article  Google Scholar 

  46. Sudesh T L, Wijesinghe L, Blackwood D J, Applied Surface Science, 253 (2006) 1006

    Article  Google Scholar 

  47. Jing (Jeanne) Yang, Wayde N. Martens and Ray L. Fros, J. Raman Spectrosc, 42 (2011) 1142

  48. Asami K, Hashimoto K, Shimodaira S, Corros. Sci, 1 (1976) 387

    Article  Google Scholar 

  49. Sugimoto K, Sawada Y, Corros Sci, 17 (1977) 425.

    Google Scholar 

  50. Bastidas J M, Torres C L, Cano E and Polo J L, Corros Sci, 44 (2002) 625

    Article  Google Scholar 

  51. Schmuki P, Bohni H, Mansfeld F, J Electrochem Soc, 140 (1993) L119

    Article  Google Scholar 

  52. Zhang A, Mater. Prot., 22 (1989) 15

    Google Scholar 

  53. Renato Altobelli Antunes, Rodrigo Uchida Ichikawa, Luis Gallego Martinez, and Isolda Costa, Intern J of Corros, 10.1155/2014/419570, 1

  54. Yamashita M, Miyuki H, Matsuda Y, Nagano H, Misawa T, Corros. Sci., 36 (1994) 283

    Article  Google Scholar 

  55. Momber A, Materand, Corros. Sci, 63 (2012) 333

    Google Scholar 

  56. Raman A, Nasrazadani S, Sharma L, Metallography, 22 (1989) No. 1, 79

  57. Montoya P, Marín T, Echavarría A, Calderón J A, Int. J. Electrochem. Sci, (2013) 12566

  58. Schwertmann U and Taylor R M, The Clays and Clay Minerals, 20 (1972) 15

    Google Scholar 

  59. Henry Leidheiser Jr. and Svetozar Music, Corros. Sci, 22 (1982) 1089

    Article  Google Scholar 

  60. Gendler T S, Shcherbakov V P, Dekkers M J, Gapeev A K, Gribov S K and McClelland E, Geophysical Journal Int, 160 (2005) 815

    Google Scholar 

  61. Mancio M, Kusinski G, Devine T M, Monteiro P JM, Electrochemical and in-situ SERS study of passive film characteristics and corrosion performance of microcomposite steel in simulated concrete pore solutions, March 2008, 1-108

  62. Colomban Ph, Cherifi S and Despert G, J. Raman Spectrosc, 39 (2008) 881

    Article  Google Scholar 

  63. Liand W S, Luo J L, Int. J. Electrochem. Sci., 2 (2007) 627

    Google Scholar 

  64. Mancio M, Kusinski G, Monteiro P J M and Devine T M, Journal of ASTM International, 6 (2009) 1

    Article  Google Scholar 

  65. Ludovic Bellot-Gurlet, Delphine Neff, SolennRéguer, Judith Monnier, Mandana Saheb, and Philippe Dillmann, Journal of Nano Research, 8 (2009) 147

    Google Scholar 

  66. Monnereau O, Tortet L, Grigorescu C E A, Savastru D, Iordanescu C R, Guinneton F, Notonier R, Tonetto A, Zhang T, Mihailescu I N, Stanoi D, Trodahl H J, Journal of optoelectronics and Advanced Materials, 12 (2010) 1752

    Google Scholar 

  67. Liangliang Li, Doo Young Kim, and Greg M. Swain, Journal of the Electrochemical Society, 159 (2012) C326

    Article  Google Scholar 

  68. Slavov L, Abrashev M V, Merodiiska T, GelevCh, Vandenberghe R E, Markova-Deneva I, Nedkov I, Journal of Magnetism and Magnetic Materials, 322 (2010) 1904

    Article  Google Scholar 

  69. Oblonsky L J and Devine T M, Corros. Sci, 37 (1995) 17

    Article  Google Scholar 

  70. Kurosawa M, Honjho H and Yagishita T, Analytical Sciences, 21 (2005) 197

    Article  Google Scholar 

  71. Sousa P M, Silvestre A J, Popovici N, Conde O, Applied Surface Science, 247 (2005) 423

    Article  Google Scholar 

  72. Haro-Poniatowski E, Jouanne M, Morhange J F, Julien C, Diamant R, Fernandez-Guastia M, Fuentes G A, Alonso J C, Applied Surface Science, 127–129 (1998) 674.

    Article  Google Scholar 

  73. Seguin L, Figlarz M, Cavagnat I R, Lassegues J C, Spectrochimica Acta Part A, 51 (1995) 132.

    Article  Google Scholar 

  74. Von Martin Dieterle, In Situ resonance Raman studies of molybdenum oxide based selective oxidation catalysts, Ph.D. thesis 2001, Technical University of Berlin, 49

  75. Johnson J W, Chi C H, Chen C K and James W J, Corrosion, 26 (1970) 238

    Google Scholar 

  76. Król S, Pietrzyk M, J Achievements in Materials and Manufacturing Engineering, 21 (2007) 45.

    Google Scholar 

  77. Khawar Sultan, Oriental Journal of Chemistry, 31 (2015) 69

    Article  Google Scholar 

  78. Legodi M A, Waal D Dee, Dyes and Pigments, 74 (2007) 161

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Pujar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bharasi, N.S., Pujar, M.G., Mallika, C. et al. Corrosion and Passive Film Formation Studies on Modified 9Cr–1Mo Steel in Different Sodium Hydroxide Concentrations at Room Temperature and in Boiling Condition. Trans Indian Inst Met 70, 1953–1963 (2017). https://doi.org/10.1007/s12666-016-0958-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-016-0958-9

Keywords

Navigation